©゙" doubtnut

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL
 ENGLISH)

SAMPLE PAPER -1

1. A dimesnsionless quantity
A. never has a unit
B. always has a unit
C. may have or have not a unit
D. none of the above

Answer: C

- Watch Video Solution

2. The magnitude of average velocity is equal to average speed when the particle moving with
A. variable speed
B. constant velocity
C. variable velocity
D. constant acceleration

Answer: B

- Watch Video Solution

3. Two blocks of masses m and $2 m$ are placed on a smooth horizontal surface as shown in the first case only a force F_{1} is applied from the left later only a force
F_{2} is applied from the right if the force acting at the interface of the two blocks in the two case is same then
$F_{1}: F_{2}$ is
A. 1:1
B. 1:2
C. 2:1
D. 1:3

Answer: C

- Watch Video Solution

4. The instantaneous angular position of a point on a rotating wheel is given by the equation $\theta(t)=2 t^{3}-6 t^{2}$. The torque on the wheel becomes zero at :
A. $t=1 s$
B. $t=0.5 s$
C. $t=0.25 s$
D. $t=2 s$

Answer: A

- Watch Video Solution

5. The work done by the conservative force for a closed path is
A. always negative
B. zero
C. always positive
D. not defined

- Watch Video Solution

6. The rain drops are spherical in shape due to
A. gravity
B. due to contraction
C. surface tension
D. viscosity

Answer: C

Watch Video Solution

7. Which of the following diagrams does not represent a streamline flow?
A.

8
B.

R
c.
D.

Answer: D

- Watch Video Solution

8. When a spiral spring is stretched by a force, the resultant strain is
A. volume
B. shear
C. tensile
D. all these

Answer: B
9. In a simple harmonic oscillation, the acceleration against displacement for one complete oscillation will be.
A. an ellipse
B. a circle
C. a parabola
D. a straight line

Answer: D

D Watch Video Solution

10. Beats are produced by two progressive waves.

Maximum loudness at the waxing is x times the loudness of each wave. The value of x is \qquad
A. 1
B. $\sqrt{2}$
C. 2
D. 4

Answer: D

- Watch Video Solution

11. Explain the role of lakes in an ecosystem.
A. ice is a good conductor of heat
B. ice reflects heat and light
C. of anomalous expansion of water between $4^{\circ} \mathrm{C}$ to $0^{\circ} C$
D. nothing can be said

Answer: C

- Watch Video Solution

12. According to kinetic theory of gases, the rms velocity of the gas molecules is directly proportional to
A. T^{2}
B. T^{3}
C. T^{4}
D. T^{8}

Answer: C

- Watch Video Solution

13. Two springs of spring constant $1500 \mathrm{Nm}^{-1}$ and
` $3000 \mathrm{Nm}-1$ respectively are stretched with the same force. They will have potential energy in the ratio
A. $1: 2$
B. 2:1
C. 1: 4
D. $4: 1$

Answer: B

- Watch Video Solution

14. When the axis of rotation passes through its centre of gravity, then the moment of inertia of a rigid body is
A. reduced, to its minimum value
B. zero
C. ncreased to its maximum value
D. infinity

Answer: A

D Watch Video Solution

15. Power is given by

$$
\begin{aligned}
& \text { A. } P=\frac{\vec{F}}{\vec{V}} \\
& \text { B. } \frac{\vec{F}^{2}}{\vec{V}} \\
& \text { C. } \frac{\vec{F}}{\vec{V}^{2}} \\
& \text { D. } \vec{F} \cdot \vec{V}
\end{aligned}
$$

Answer: D

D Watch Video Solution

16. Two protons are travelling along the same straight path but in opposite directions. The relative velocity
between the two is
A. C
B. $\frac{c}{2}$
C. $2 c$
D. 0

Answer: A

- Watch Video Solution

17. If the Earth stops rotating about its own axis, g remains unchanged at
A. equator
B. poles
C. latitude of 45°
D. no where

Answer: B

D Watch Video Solution

18. When train stops, the passenger move forward, It is due to
A. inertia of passenger
B. Inertia of train
C. gravitational pull by Earth

D. none of the above

Answer: A

- Watch Video Solution

19. A particle of mass m moves in the xy plane with a velocity v along the straight line AB . If the angular momentum of the particle with respect to origin O is L_{A} when it is at A and L_{B} when it is at B , then
A. $L_{A}=L_{B}$
B. $L_{A}<L_{B}$
C. $L_{A}>L_{B}$
D. the relationship between L_{A} and L_{B} depends upon the slope of the line $A B$

Answer: A

D View Text Solution

20. A couple produces
A. pure rotation
B. pure translation
C. rotation and translation
D. no motion

Answer: A

- Watch Video Solution

21. A body starting from rest has an acceleration of
$20 \mathrm{~ms}^{-2}$ the distance travelled by it in the sixth second is ...
A. 110 m
B. 130 m
C. 90 m
D. 50 m

Answer: A

- Watch Video Solution

22. A lift of mass 1000 kg which is moving with an acceleration of $1 m s^{-2}$ in upward direction, then the tension developed in string which is connected to lift is
A. 9800 N
B. 10800 N
C. 11000 N
D. 10000 N

Answer: C

23. The relation between acceleration and displacement of four particles are given below
A. $a_{x}=2 x$
B. $a_{x}=+2 x^{2}$
C. $a_{x}=-2 x^{2}$
D. $a_{x}=-2 x$

Answer: D

- Watch Video Solution

24. A sonometer wire is vibrating in the second overtone. In the wire there are \qquad
A. two nodes and two antinodes
B. one node and two antinodes
C. four nodes and three antinodes
D. three nodes and three antinodes

Answer: D

D Watch Video Solution

25. Which of the following is the best reflector of light?
A.
B. $\quad \Delta$
C.
D.

Answer: C

D Watch Video Solution

26. According to kinetic theory of gases, the rms velocity of the gas molecules is directly proportional to
A. \sqrt{T}
B. T^{3}
C. T
D. T^{4}

Answer: A

D Watch Video Solution

27. A body of mass m moving with velocity v collides head on with another body of mass 2 m which is initially
at rest. The ratio of K.E of colliding body before and after collision will be
A. 1:1
B. 2:1
C. $4: 1$
D. 9:1

Answer: D

- Watch Video Solution

28. Four particles have velocity $1,0,2$ and $3 \mathrm{~ms}^{-1}$ The root mean square velocity of the particles is
A. $3.5 m s^{-1}$
B. $\sqrt{3.5} m s^{-1}$
C. $1.5 m s^{-1}$
D. 0

Answer: B

D Watch Video Solution

29. Two vibrating tuning forks produce progressive waves given be $y_{1}=4 \sin 500 \pi t$ and $y_{2}=2 \sin 506 \pi t$ where t is in seconds number of beats produced per minute is
A. 360
B. 180
C. 3
D. 60

Answer: B

- Watch Video Solution

30. Workdone by a simple pendulum in one complete oscillation is
A. 0
B. $\sqrt{m g}$
C. $m g \cos \theta$
D. $m g \sin \theta$

Answer: A

- Watch Video Solution

Part li

1. What are longitudinal and transverse waves ?

D Watch Video Solution

2. Is it possible that the brakes of a car are so parfect that car stops instantaneously . If not give reason.
3. Why does rubber ball bounce greater heights on hills than

- Watch Video Solution

4. State conservation of angular momentum.

D Watch Video Solution

5. Mountain roads rarely go striaght up the slop, but wind up gradually. Why ?
6. State Newton's second law .

- Watch Video Solution

7. Explain why the specific heat capacity at constant pressure is greater than the specific heat capacity at constant volume.

- Watch Video Solution

8. Define angle of contact.
9. Define forced oscillation. Give an example.

- Watch Video Solution

10. A girl is swinging on a swing in the sitting position.

How will the period of swing be affected if she stands
up?

- Watch Video Solution

11. A car starts to move from rest with uniform
acceleration $10 \mathrm{~ms}^{-2}$ then after 5 sec , what is its velocity?
12. Define Lami's theorem.

- Watch Video Solution

13. A constant torque is acting on a wheel. If starting from rest, the wheel makes n rotations in t seconds,

Show that the angular acceleration is given by
$\alpha=\frac{4 \pi n}{t^{2}} \mathrm{rad} s^{-2}$.
D Watch Video Solution
14. Why a given sound is louder in a hall than in the open?

D Watch Video Solution

15. What are the differences between connection and conduction?

- Watch Video Solution

16. Why two holes are made to empty an oil tin ?
17. If the length of the simple pendulum is increased by 44\% from its original length, calculate the percentage increase in time period of the pendulum.

D Watch Video Solution

18. When do the real gases obey more correctly the gas equation : $\mathrm{PV}=\mathrm{nRT}$?

- Watch Video Solution

Part lif

1.

$$
G=6.67 \times 10^{-11} \mathrm{Nm}^{2}(\mathrm{~kg})^{-2}=\ldots \ldots \ldots . .(\mathrm{cm})^{3} \mathrm{~s}^{-2} g^{-1}
$$

D Watch Video Solution

2. An object is thrown with initial speed $5 m s^{-1}$ with an angle of projection 30°. What is the maximum height and range reached by the particle?
3. Three mass points $m_{1} m_{2}$ amd m_{3} are located at the vertices of an equilateral triangle of length a. What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?

- Watch Video Solution

4. A box is pulled with a force of 25 N to produce a displacement of 15 m . If the angle between the force and displacement is 30°. Find the work done by the force ?
5. The time period of a mass suspended by a spring
(force constant K) is T . If the spring is cut into three equal pieces, what will be the force constant of each part? If the same mass be suspended from one piece what will be the periodic time?

D Watch Video Solution

6. Give various applications of viscosity

D Watch Video Solution

7. Write a note on quasi-static process.
8. A body cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 min of room If the room temperature is $25^{\circ} \mathrm{C}$ and assuming Newton's cooling law holds good, the temperature of the body after 10 more minute.

- Watch Video Solution

9. Consider two springs with force constants $1 \mathrm{Nm}^{-1}$ and $2 \mathrm{Nm}^{-1}$ connected in parallel. Calculate the effective spring constant (k_{p}) and comment on k_{p}.
10. A stone is thrown upwards with a speed y from the top of a tower. It reaches the ground with a velocity 3 v . What is the height of the tower?

D Watch Video Solution

11. An object at an angle such that the horizontal range
is 4 time of the maximum height. What is the angle of projection of the object?

- Watch Video Solution

12. A room contains oxygen and hydrogen molecule in
the ratio 3:1. The temperature of the room is $27^{\circ} \mathrm{C}$
.The molar mass of O_{2} is $32 \mathrm{~g} \mathrm{~mol}^{-1}$ and for $H_{2} 3 \mathrm{~g}$ mol^{-1}. The value of gas constant R is 8.32 J $\operatorname{mol}^{-1} K^{-1}$
calculate:
(a) rms speed of oxygen and hydrogen molecule.
(b) Average kinetic energy per oxygen molecule and per hydrogen molecule.
(c) Ratio of average kinetic energy of oxygen molecules and hydrogen molecules.

D Watch Video Solution

13. Define angle of friction

- Watch Video Solution

14. How does resolve a vector into its component?

Explain.

- Watch Video Solution

15. Derive an expression for energy of satellite.
16. Explain in detail newton's law of cooling .

- Watch Video Solution

17. Explain Laplace's correction.

D Watch Video Solution

18. Explain the types of equilibrium with suitable examples
19. Describe the construction and working of venturimeter and obtain an equation for the volume of liquid flowing per second though a wider entry of the tube

D Watch Video Solution

2. Derive the time period of satellite orbiting the Earth.

- Watch Video Solution

3. State and explain work energy principle. Mention any three examples for it.

D Watch Video Solution

4. Derive an expression for potential energy near the surface of the earth

- Watch Video Solution

5. Derive the expression for Carnot engine efficiency.

Watch Video Solution

6. Derive the expresssion for moment of inertia of a rod about its centre and perpendicular to the rod.

- Watch Video Solution

7. Prove that gravitational field intensity at any point in equal to acceleration experienced at that point.

D Watch Video Solution

8. Define an adiabatic process.
9. Describe the construction and working of venturimeter and obtain an equation for the volume of liquid flowing per second through a wider entry of the tube.

D Watch Video Solution

10. Define gravitational potential energy.

- Watch Video Solution

11. What are the applications of dimensional analysis?

Verify $s=u t+\frac{1}{2} a t^{2}$ by dimensional analysis
12. Explain the types of equilibrium with suitable examples

D Watch Video Solution

13. Explain the motion of blocks connected by a string in (i) vertical motion (ii) horizontal motion .

D Watch Video Solution

14. Derive the kinematic equations of motion for constant acceleration.

- Watch Video Solution

15. State and prove perpendicular axis theorem.

D Watch Video Solution

16. Explain in detail the triangle law of addition.

D Watch Video Solution

17. Explain in detail the various types of errors.
18. To move an object, which one is easier, push or pull?

Explain

(D) Watch Video Solution

19. Describe the method of measuring angle of repose

D Watch Video Solution

20. A block of mass m slides down the plane inclined at an angle 60° with an acceleration $\mathrm{g} / 2$. Find the coefficient of kinetic friction.
21. (i) Explain the use of screw gauge and vernier caliper in measuring smaller distances.
(ii) Write a note on triangultion method and radar method to measure larger distances.

- Watch Video Solution

22. Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72".

Calculate the diameter of Jupiter.

D Watch Video Solution

