©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - HC VERMA PHYSICS

(ENGLISH)

ROTATIONAL MECHANICS

Example

1. The motor of an engine is rotating about its
axis with an angular velocity of 100
rev/minute. It comes to rest in 15 s , after being switched off. Assuming constant angular deceleration, calculate the number of revolutions made by it before coming to rest.

D Watch Video Solution

2. Starting from rest, a fan takes five seconds to attain the maximum speed of 400 rpm
(revolutions per minute). Assuming constant acceleration find the time taken by the fan in attaining half the maximum speed.
3. A bucket is being lowered down into a well through a rope passing over a fixed pulley of radius 10 cm . Assume that the rope does not
slip on the pulley. Find the angular velocity and angular acceleration of the pulley at an instant when the bucket is going down at at speed of $20 \mathrm{~cm} / \mathrm{s}$ and has an acceleration of $4.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
4. Consider a pulley fixed at its centre of mass by a clamp. A light rope is wound over it and the free end is tied to block. The tension in the rope is T . a. Write the forces acting on the pulley. How are they related? B. Locate the axis of rotation. c. Find the torque of the forces abut the axis of rotation.

- Watch Video Solution

5. A wheel of radius 10 cm can rotate freely about its centre as shown in figure. A string is wrapped over its rim and is pulled by a force of 5.0 N . It is found that the torque produces an angular acceleration $2.0 \mathrm{rads}^{-2}$ in the wheel. Calculate the moment of inertia of the
wheel.

- Watch Video Solution

6. A wheel is rotating at an angular speed ω about its axis which is kept vertical. An identical wheel initially at rest is gently dropped into the same axle and the two
wheels start rotating with a common angular speed. Find this common angular speed.

D Watch Video Solution

7. A wheel of moment of inertia I and radius r is free to rotate about its centre as shown in
figure. A string is wrapped over its rim and a block of mass m is attached to the free end of the string. The system is released from rest.

Find the speed of the block as it descends
through a height h.

Datch Video Solution

8. Consider a light rod with two heavy mass particles at its ends. Let $A B$ be a line
perpendicular to the rod as shown in figure.

What is the moment of inertia of the system about $A B$?

D Watch Video Solution

9. Three particles, each of mass m are situated at the vertices of an equilateral triangle $A B C$ of
side L as shown in the figure. Find the moment
of inertia of the system about the line AX

perpendicular to $A B$ in the plane of $A B C$

D Watch Video Solution
10. Find the moment of inertia of a uniform ring of mass M and radius R about a diameter.

- Watch Video Solution

11. Find the moment of inertia of a solid cylinder of mass M and radius R about a line parallel to the axis of the cylinder and on the surface of the cylinder.
12. A uniform sphere of mass 200 g rolls without slipping on a plane surface so that its
centre moves at a speed of $2.00 \mathrm{~cm} / \mathrm{s}$. Find its
kinetic energy.

D Watch Video Solution

Worked Out Examples

1. A wheel rotates with a constant acceleration
of $2.0 \frac{r a d}{s^{2}}$. If the wheel starts from rest, how
many revolutions will it make in the first 10 seconds?

D Watch Video Solution

2. The wheel of a motor, accelerated uniformly from rest, rotates through 2.5 radian during
the first second. Find the angle rotated during the next second.
3. A wheel having moment of inertia $2 \mathrm{~kg} \mathrm{~m}^{\wedge} 2$ about its axis, rotates at 50 rpm about this axis. Find the torque that can stop the wheel in one minute.

- Watch Video Solution

4. A string is wrapped around the rim of a wheel of moment of inertia $0.20 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$ and radius 20 cm . The wheel is free to rotate about it axis. Initially, the wheel is at rest. The string
is now pulled by a force of 20 N . Find the angular velocity of the wheel after 5.0 seconds.

D Watch Video Solution

5. A wheel of radius r and moment of inertia I
about its axis is fixed at top of an inclined
plane of inclination θ as shown in figure. A
string is wrapped round the wheel and its free end supports a block of mass M which can
slide on the plane. Initially, the wheel is rotating at a speed ω in direction such that
the block slides up the plane. How far will the block move before stopping?

D Watch Video Solution

6. The pulley shown in figure has a moment of inertia I about it's axis and its radius is R. Find the magnitude of the acceleration of the two blocks. Assume that the string is light and

does not slip on the pulley.

- Watch Video Solution

7. Two small kids weighing 10 kg and 15 kg respectively are trying to balance a seesaw of
total length 5.0 with the fulcrum at the centre.

If one of the kids is sitting at an end where should the other sit?

D Watch Video Solution

8. A uniform ladder of mass 10 kg leans against
a smooth vertical wall making an angle of 53^{0}
with it. The other end rests on a rough
horizontal floor. Find the normal force and the
frictional force that the floor exerts on the ladder

Watch Video Solution

9. The ladder shown in figure has negligible mass and rests on a frictionless floor. The crossbar connects the two legs of the ladder at the middle. The angle between the two legs is 60°. The fat person sitting on the ladder has a mas of 80 kg . Find the contact force exerted by the floor on each leg and the tension in the
cross bar.

- Watch Video Solution

10. Two small balls A and B each of mass m, are attached tightly to the ends of a light rod of
length d. The structure rotates about the perpendicular bisector of the rod at an angular speed ω. Calculate the angular momentum of the individual balls and of the system about the axis of rotation.

D Watch Video Solution

11. Two particles of mass m each are attached to a light rod of length d, one at its centre and the other at a free end, The rod is fixed at the other end and is rotated in a plane at an
angular speed ω. Calculate the angular momentum of the particle at the end with respect to the particle at the centre

D Watch Video Solution

12. A particle is projected at time $t=0$ from a point P wilth a speed v_{0} at an angle of 45° to the horizontal. Find the magnitude and the direction of the angular momentum of the particle about the point P at time $t=\frac{v_{0}}{g}$
13. A uniform circular disc of mass 200 g and radius 4.0 cm is rotated about one of its diameter at an angular speed of $10 \mathrm{rad} / \mathrm{s}$. Find the kinetic energy of the disc and its angular momentum about the axis of rotation.

D Watch Video Solution

14. A wheel rotating at an angular speed of 20
$\mathrm{rad} / \mathrm{s}$ is brought to rest by a constant torque
in 4.0 seconds. If the moment of inertia of the
wheel about the axis of rotation is 0.20
$k g-m^{2}$ find the work done by the torque in the first two seconds.

- Watch Video Solution

15. Two masses m and $M(m<M)$ are joined
by a light string passing over a smooth and

light pulley (as shown)

(Watch Video Solution
16. Figure shows a mass m placed on a
frictionless horizontal table and attached toa
string passing through a mall hole in the
surface. Initially, themas movesin a circle of
radius r_{0} with a speed v_{0} and the ree end of
the string is held by a person. The person pulls
on the string slowly to decrease the radius of
th circle of r. a. Find the tension in the string
when the mass moves in the circle of radius r.
b. Calculate the chasnge in the kinetic energy
of the mass
17. A uniform rod of mas m and length I is kept vertical with the lower end clamed. It is slightly pushed to let it fall down under gravity. Find its angular speed when the rod is passing through its lowest positon. Neglect any friction at the clamp. What will be the linear speed of the free end at this instant?

- Watch Video Solution

18. Four particles each of mass 'm' are kept at
the four corners of a square of edge 'a'. Find
the moment of inertia of the system about a line perpendicular to the plane of the square and passing through the center of the square.

D Watch Video Solution

19. Two identical spheres each of mass 1.20 kg and radius 10.0 cm are fixed at the ends of a
light rod so that the separation between the
centers is 50.0 cm . Find the moment of inertia of the system about an axis perpendicular to the rod passing through its middle point.

D Watch Video Solution

20. Two uniform identicla rods each of mass M and length I are joined to form a cross as
shown in figure. Find the momet of inertia of
the cross about a bisector as shown doted in
the figure

- Watch Video Solution

21. A uniform rod of mass M and length a lies
on a smooth horizontal plane. A particle of
mass m moving at a speed v perpendicular to
the length of the rod strikes it at a distance $\frac{a}{4}$
from the centre and stops after the collision.

Find a. the velocity of the cente of the rod and
b. the angular velocity of the rod abut its centre just after the collision.

D Watch Video Solution

22. A wheel of perimeter 220 cm rolls on a level
road at a speed of $9 \mathrm{~km} / \mathrm{h}$. How many
revolutions does the wheel make per second?

Watch Video Solution

23. A cylinder is released from rest from the top of an incline of inclination θ and length 'L'. If the cylinder rolls without slipping. What will be its speed when it reaches the bottom?

- Watch Video Solution

24. A sphere of mass m rolls without slipping on an inclined plane of inclination θ. Find the linear acceleration of the sphere and the force
of friction acting on it. What should be the minimum coefficient of static friction to support pure rolling?

D Watch Video Solution

25. Figure shows two cylinders of radii r_{1} and r_{2} having moments of inertia
I_{1} and I_{2} about their respective axes. Initially
the cylinders rotate about their axes with angular speed ω_{1} and ω_{2} as shown in the figure. The cylinders are moved closer to touch
each other keeping the axes parallel. The cylinders first slip over each other at the contact but the slipping finally ceases due to the friction between them. Find the angular speeds of the cylinders after the slipping ceases.

D Watch Video Solution

26. A cylinder of mass m is suspended through
two strings wrapped around it as shwon in
figure . Find a. the tension T in the string and b. the speed o the cylinder as it falls through a distance h.

- Watch Video Solution

27. A force F acts tangentially at the highest point of a sphere of mass m kept on a rough
horiozontal plane. If the sphere rolls withut slipping, find the accelerastioni of the centre of the sphere.

- Watch Video Solution

28. A sphere of mass M and radius r shown in
figure slips on a rough horizontal plane. At some instant it has translational velocity V_{0}
and rotational velocity about the centre $\frac{v_{0}}{2 r}$.
Find the translational velocity after the sphere starts pure rolling.

D Watch Video Solution

29. The sphere shown in figure lies on a rough
plane when a particle of mass m travelling at a
speed v_{0} collides and sticks with it. If the line of motion of the particle is at a distance h
above the plane, find a. the linear speed o the combined system just after the collision b. the angular speed of the system about the centre of the sphere just the collision c. the value of h
for which the sphere starts pure rolling on the plane Assume that the mass M of the sphere is
large compared to the mass of the particle so
that the centre of mass of the combined system is not appreciably shifted from the

centre of the sphere.

- Watch Video Solution

Objective 1

1. Let \vec{A} be a unit vector along the axis of rotation of a purely rotating body and \vec{B} be a unit vector along the velocity of a particle P of
the body away from the axis. The value of $\vec{A} \cdot \vec{B}$ is
A. 1
B. -1
C. 0
D. none of these

Answer: C
(Watch Video Solution
2. A body is uniformly rotating bout an axis
fixed in an inertial frame of reference. Let \vec{A}
be a unit vector along the axis of rotation and \vec{B} be the unit vector along the resultant force on a particle P of the body away from the axis. The value of $\vec{A} \cdot \vec{B}$ is
A. 1
B. -1
C. 0
D. none of these

Answer: C

D Watch Video Solution

3. A particle moves with a constant velocity parallel to the X-axis. Its angular momentum with respect to the origin
A. is zero
B. remains constant
C. goes on increasing
D. goes on decreasing

Answer: B

D Watch Video Solution

4. A body is in pure rotation. The linear speed
' v ' of a particle, the distance ' r ' of the particle
from the axis and the angular velocity ω of the body are related as $\omega=\frac{v}{r}$. Thus
A. $\omega \propto \frac{1}{r}$
B. $\omega \propto r$
C. $\omega=0$

D. ω is independent of r

Answer: D

- Watch Video Solution

5. Figure shows a small wheel fixed coaxially on
a bigger one of double the radius. The system rotates about the common axis. The strings supporting A and B do not slip on the wheels.

If x and y be the distances travelled by A and B
in the same time interval, then

A. $x=2 y$

$$
\text { B. } x=y
$$

C. $y=2 x$
D. none of these

Answer: C

D Watch Video Solution

6. A body is rotating uniformly about a vertical axis fixed in an inertial frame. The resultant force on a particle of the body not on axis is
A. vertical
B. horizontal skew with the axis
C. horizontal and intersecting the axis
D. none of these

Answer: C

D Watch Video Solution
7. A body is rotating anonuniformly abut a vertical axis fixed in an inertial frame. The
resultant force on a particle of the body of thebody not on the axis is
A. vertical
B. horizontal and skew with the axis
C. horizontal and intersection
D. none of these

Answer: B
(Watch Video Solution
8. Let \vec{F} be the force acting on a particle having position vector \vec{r} and \vec{T} be the torque of this force about the origin. Then
A. $\vec{r} \cdot \vec{\Gamma}=0$ and $\vec{F} \cdot \vec{\Gamma}=0$
B. $\vec{r} \cdot \vec{\Gamma}=0 b u t \vec{F} \cdot \vec{\Gamma} \neq 0$
c. $\vec{r} \cdot \vec{\Gamma} \neq 0 b u t \vec{F} \cdot \vec{\Gamma}=0$
D. $\vec{r} \cdot \vec{\Gamma} \neq 0$ and $\vec{F} \cdot \vec{\Gamma} \neq 0$

Answer: A
9. One end of a uniform rod of mas m and
length I is clamped. The rod lies on a smooth
horizontal surface and rotates on it about the
clamped end at a uniform angular velocity ω.
The force exerted by the clamp on the rod has
a horizontal component
A. $m \omega^{2} l$
B. zero
C. $m g$
D. $\frac{1}{2} m \omega^{2} l$

Answer: D

- Watch Video Solution

10. A uniform rod is kept vertically on a
horizontally smooth surface at a point O. IF it
is rotated slightly and released, it falls down
on the horizontal surface. The lower end will
remain
A. at O
B. at a distance less than $\frac{l}{2}$ from O
C. at a distance $\frac{l}{2}$ from O
D. at a distance larger than $\frac{l}{2}$ from O

Answer: C

D Watch Video Solution

11. A circular disc A of radius r is made from an
iron plate of thickness t and another circular disc B of radius $4 r$ is made from an iron plate of thickness $t / 4$. The relation between the moments of inertia I_{A} and I_{B} is
A. $I_{A}>I_{B}$
B. $I_{A}=I_{B}$
C. $I_{A}<I_{B}$
D. depends on the actual values of t and r

Answer: C

D Watch Video Solution

12. Equal torques asct on the discs A and B of
theh previous problem, initially both being at rest. At a later instant, theliear speeds of a
point on therim of a A another potin on the rim of B are V_{A} and V_{B} respectively. We have
A. $V_{A}<V_{B}$
B. $V_{A}=V_{B}$
C. $V_{A}<V_{B}$
D. 'the relation depends on the tactual magnitude of the torques

Answer: A

- Watch Video Solution

13. A closed cylindrical tube containing some
water (not filling the entire tube) lies in a horizontal plane. If the tube is rotated about a perpendicular bisector, the moment of inertia of water about the axis
A. increases
B. decreases
C. remains constant
D. increases if the rotation is clockwise and
decreases if it is anticlockwise

Answer: A

D Watch Video Solution

14. The moment of inertia of a uniform semicircular wire of mass ' M ' and radius ' r ' about a line perpendicular to the plane of the wire through the center is
A. $M r^{2}$
B. $\frac{1}{2} M r^{2}$
C. $\frac{1}{4} M r^{2}$
D. $\frac{2}{5} M r^{2}$

Answer: A

D Watch Video Solution

15. Let I_{1} and I_{2} be the moments of inertia of two bodies of identical geometrical shape, the
first made of aluminum and the second of iron.

$$
\text { A. } I_{1}<I_{2}
$$

B. $I_{1}=I_{2}$
C. $I_{1}>I_{2}$
D. Relation between I_{1} and I_{2} depends on
the actual shapes of the bodies

Answer: A

D Watch Video Solution
16. A body having its centre of mass at the origin has three of its particles at
$(a, 0,0),(0, a, 0),(0,0, a)$. The moments of
inertia of the body about the X and Y axes are
$0.20 \mathrm{~kg}-m^{2}$ each. The moment of inertia about the Z-axis
A. is $0.20 \mathrm{~kg}-\mathrm{m}^{2}$
B. is $0.40 \mathrm{~kg}-\mathrm{m}^{2}$
C. is $0.20 \sqrt{2} \mathrm{~kg}-\mathrm{m}^{2}$
D. cannot be deduced with this
information.

Answer: D

D Watch Video Solution
17. A cubical block of mass M and edge a slides down a rougg inclined plane of inclination θ with a uniform velocity. The torque of the normal force on the block about its centre has magnitude.
A. zero
B. Mga
C. $M g a \sin \theta$
D. $\frac{1}{2} M g a \sin \theta$

Answer: D

- Watch Video Solution

18. A thin circular ring of mass M and radius r
is rotating about its axis with an angular
speed ω. Two particles having mass m each are now attached at diametrically opposite points.

The angular speed of the ring will become
A. $\frac{\omega M}{M+m}$
B. $\frac{\omega M}{M+2 m}$

$$
\begin{aligned}
& \text { C. } \frac{\omega(M-2 m)}{M+2 m} \\
& \text { D. } \frac{\omega(M+2 m)}{M}
\end{aligned}
$$

Answer: B

D Watch Video Solution

19. A man is sitting on a rotating stool with his
arms outstretched. If suddenly he folds his
arms the angular velocity of the man would
A. increases
B. decreases
C. remains unchanged

D. doubles

Answer: C

- Watch Video Solution

20. The center of a wheel rolling on a plane surface moves with a speed v_{0}. A particle on the rim of the wheel at the same level as the center will be moving at speed
A. zero
B. v_{0}
C. $\sqrt{2} v_{0}$
D. $2 v_{0}$

Answer: C

D Watch Video Solution

21. A wheel of radius 20 cm is pushed ot move it on a rough horizontal surface. It is found to move through a distance of 60 cm on the road
during the time it completes one revolutionabout the centre. Assume that the linear and the angular accelerations are uniform. The frictional force acting on the wheel by the surface is
A. along the velocity of the wheel
B. opposite to the velocity o the wheel
C. perpendicular to the velocity of the wheel
D. zero

Answer: A

- Watch Video Solution

22. The angular velocity of the engine (and hence of the wheel) on a scooter is proportional to the petrol input per second.

The scooter is moving on a frictionless road with uniform velocity. If the petrol input is increased by 10% the linear velocity of the scooter is increased by
A. 0.5
B. 10
C. 0.2
D. 0

Answer: D

D Watch Video Solution

23. A solid sphere, a hollow sphere and a disc,
all having the same mass and radius, are placed at the top of an incline and released.

The friction coefficients between the objects
and the incline are same and not sufficient to
allow pure rolling. The least time will be taken in reaching the bottom by
A. the solid sphere
B. the hollow sphere
C. the disc
D. all will take same time

Answer: D

24. A solid sphere, a ring and a disc all having same mass and radius are placed at the top of
an incline and released. The friction coefficient between the objects and the incline are same but not sufficient to allow pure rolling. Least time will be taken in reaching the bottom by
A. the solid sphere
B. the hollow sphere
C. the disc
D. all will take same time

Answer: D

D Watch Video Solution

25. In the previous question the smallest
kinetic energy at the bottom of the incline will
be achieved by
A. the solid sphere
B. the hollow sphere
C. the disc
D. all will achieve same kinetic energy

Answer: B

D Watch Video Solution

26. A string of negligible thicknes is wrapped several times around a cylinder kept on a rough horizontal surface. A man standing at a distance I from the cylinder holds one end of the sitting an pulls the cylinder towards him
figure. There is no slipping anywhere. The length of the string passed through the hand of the man whicle the cylinder reaches his
hands is

A. I
B. $2 \mid$
C. 31
D. 41

Answer: B

Objective 2

1. The axis of rotation of a purely rotating body
A. must pass through the centre of mass
B. may pass through the centre of mass
C. must pass through a particle of the body
D. may pass through a particle of the body
2. Consider the following two equations
A. $L=I \omega$
B. $\frac{d L}{d t}=\Gamma$

In non-inertial frames...
A. both A and B are true
B. A is true but B is false
C. B is true but A is false
D. both and B are false

D Watch Video Solution

3. A particle moves on a straight line with a uniform velocity. It's angular momentum
A. is always zero
B. is zero about a point on the straight line
C. is not zero about a point away from the straight line

D. about any given point remains constant

Answer: B::C::D

D Watch Video Solution

4. If there is no external force acting on a nonrigid body, which of the followhng quantities must remain constant?
A. angular momentum
B. linear momentum
C. kinetic energy
D. moment of inertia

Answer: A::B

D Watch Video Solution

5. Let I_{A} and I_{B} be moments of inertia of a body about two axes A and B respectively.

The axis A passes through the centre of mass of the body but B does not. Then
A. $I_{A}<I_{B}$
B. $I f I_{A}<I_{B}$ the axes pareparallel
C. Iftheaxesareparal $\leq l I_{A}<I_{B}$
D. Iftheaxesare \neg paral $\leq l I_{A} \geq I_{B}$

Answer: C

D Watch Video Solution
6. A sphere is rotating about a diameter
A. the particles on the surface of the sphere do not have any linear acceleration
B. the particles on the diameter mentioned above do not have any linear acceleration
C. different particle son the surfce have different angular speeds.
D. All particles on the surface have same
linear speed

Answer: B

D Watch Video Solution

7. Consider a wheel of a bicycle rolling on a
level road at a linear speed v_{0} figure.

A. the speed of the particle A is zero

B. the speed of B, C and D are all equal to v_{0}

C. The speed of C is $2 v_{0}$
D. the speed of B is greater than the speed of O .

Answer: A::C::D

D Watch Video Solution

8. Two uniform solid spheres having unequal radii are released from rest from the same
height on a rough incline. If the spheres roll without slipping
A. the heavier sphere reaches the bottom
first
B. the bigger sphere reaches the bottom
first
C. the two spheres reach the bottom together
D. the information given is not sufficient to
tell whidch sphere will reach the bottom
first.

Answer: C

D Watch Video Solution

9. A hollow sphere and a solid sphere having same mass and same radii are rolled down a rough inclined plane.
A. the hollow sphere reaches the bottom
first
B. the solid sphere reaches the bottom

with greater speed.

C. the soid sphere reaches the bottom with
greater kinetic energy
D. the two spheres will reach the bottom
wilth same linear momentum

Answer: B

D Watch Video Solution

10. A sphere cannot roll on

A. a smooth horizontal surface
B. a smooth inclined surface
C. a rough horizontal surface
D. a rough inclined surface

Answer: B

D Watch Video Solution

11. In rear wheel drive cars the engine rotastes
the rear whel and the front wheels rotates only becomes the car moves. Ilf such a car accelerates on horizontal road the friction
A. on the rear wheels ils i the forward
direction
B. on the front whels is in the backward
direction
C. on the rear wheels has larger magnitude
thant the friction on the front wheels

D. on the car is in the backward direction

Answer: A::B::C

- Watch Video Solution

12. A sphere can roll on a surface inclined at an
angle θ if the friction coefficient is more than
2
$\frac{2}{7} g \sin \theta$. Suppose the friction coefficient is
$\frac{1}{7} g \sin \theta$, and a sphere is released from rest on
the incline,
A. it will stay at rest
B. it wil make pure translation motion
C. it will translate and rotate about the
centre
D. the angular momentum of the sphere
about its centre will remain constant

Answer: C

- Watch Video Solution

13. A sphere is rolled on a rough horizontal
surface. It gradually slows down and stops.

The force of friction tries to
A. decrease the linear velocity
B. increase the angular velocity
C. increase the linear momentum
D. decrese the angular velocity

Answer: A::B

D Watch Video Solution
14. Figure shows smooth inclined plane fixed in a car accelerating on a horizontal road. The angle of incline θ is related to the acceleration a of the car as $a=g \tan \theta$. If the sphere is set in pure rolling on the incline

A. it will continue pure rolling
B. it will slip down the plane

C. its linear velocity will increase

D. it linear velocity will slowlyidecrease.

Answer: A

- Watch Video Solution

Exercises

1. A wheel is making revolutions about its axis
with uniform angular acceleration. Starting
from rest, till it reaches $100 \mathrm{rev} / \mathrm{sec}$ in 4
seconds. Find the angular acceleration. Find the angle rotated during these four seconds.

D Watch Video Solution

2. A wheel rotating wilth unifrom angular acceleration covers 50 revolutions in the first
five seconds after the start. Find the angular acceleration and the angular velocity at the end of five seconds.
3. A wheel starting from rest is uniformly accelerate at $4 r a \frac{d}{s^{2}}$ for 10 seconds. It is allowed to rotate uniformly for the next 10 seconds and is finally brought to rest in the next 10 seconds. Find the total angle rotated by the wheel.

- Watch Video Solution

4. A body rotates about a fixed axis with an
does it rotate during the time in which its angular velocity increases from $5 \mathrm{rad} / \mathrm{s}$ to 15 rad/s.

D Watch Video Solution

5. Find the angular velocity of a body rotating with an acceleration of $2 r e \frac{v}{s^{2}}$ as it completes the 5th revolution after the start
6. A disc of radius 10 cm is rotating about its
axis at an angular speed of $20 \mathrm{rad} / \mathrm{s}$. Find the
linear speed of
a. a point on the rim,
b. the middle point of the radius.

D Watch Video Solution

7. A disc rotates about its axis with a constant angular acceleration of $4 r a \frac{d}{s^{2}}$. Find the radial and tangential acceleration of a particle at a
distance of 1 cm from the axis at the end of the first second after the disc starts rotating.

D Watch Video Solution

8. A block hangs from a string wrapped on a disc of radius 20 cm free to rotate about its axis which is fixed in a horizontal position. If the angular speed of the disc is $10 \mathrm{rad} / \mathrm{s}$ at some instant, with what speed is the block going down at that instant?
9. Three particles, each of mass 200 g are kept at the corners of an equilateral triangle of side

10 cm . Find the moment of inertia of the system about an axis
a. joining two of the particles
b. passing through one of the particle perpendicular to the plane of the particles.

- Watch Video Solution

10. Particles of masses $1 \mathrm{~g}, 2 \mathrm{~g}, 3 \mathrm{~g}$.... 100 g are kept at the marks $1 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm} \ldots . ., 100 \mathrm{~cm}$ respectively on a metre scale. Find the moment of inertia of the system of particles about a perpendicular bisector of the metre scale.

D Watch Video Solution

11. Find the moment of inertia of a pair of spheres, each having a mass m and radius r
kept in contact about the tangent passing through the point of contact.

D Watch Video Solution

12. The moment of inertia of a uniform rod of mass 0.50 kg and length 1 m is $0.10 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{\wedge} 2$ about a line perpendicular to the rod. Find the distance of this line from the middle point of the rod.

D Watch Video Solution

13. Find the radius of gyration of a circular ring of radius r about a line perpendicular to the plane of the ring and passing through one of this particles.

- Watch Video Solution

14. The radius of gyration of a uniform disc about a line perpendicular to the disc equals to its radius. Find the distance of the line from the centre.
15. Find the moment of inertia of a uniform square plate of mass M and edge a about one of its diagonals.

D Watch Video Solution

16. The surface density (mass/area) of a circular disc of radius a depends on the distance from the centre as $\rho(r)=A+B r$.

Find its moment of inertia about the line
perpendicular to the plane of the disc through its centre.

D Watch Video Solution

17. A particle of mass m is projected with speed u at an angle θ with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.

D Watch Video Solution

18. A simple pendulum of length I is pulled aside to make an angle θ with the vertical. Find the magnitude of the torque of the weight w of the bob about the point of suspension. When is the torque zero?

- Watch Video Solution

19. When a force of 6.0 N is exerted at 30° to a wrench at a distance of 8 cm from the nut, it is
just able to losen the nut. What force F would be sufficient to loosen it if it acts
perpendicularly to the wrench at 16 cm from the nut?

D Watch Video Solution

20. Find the charge on the capacitor shown in
figure

- Watch Video Solution

21. A cubical block of mass M and edge a slides down a rough inclined plane of inclination θ with a uniform velocity. The torque of the normal force on the block about its centre has magnitude.

- Watch Video Solution

22. A rod of mass m and length L, lying horizontally is free to rotate about a vertical axis through its centre. A horizontal force of constant magnitude F acts on the rod at a distance of $L / 4$ from the centre. The force is always perpendicular to the rod. Find the angle rotated by the rod during the time t after the motion starts.
23. A square plate of mass 120 g and edge 5.00 cm rotates about one of the edges. If it has a uniform angular acceleration of $0.2 \mathrm{ra} \frac{\mathrm{d}}{s^{2}}$, what torque acts on the plate?

D Watch Video Solution

24. Calculate the torque on the square plate of
the previous problem if it rorates about a diagonal with the same angular acceleration.
25. A flywheel of moment of inertia $5.0 \mathrm{~kg} \mathrm{~m}^{\wedge} 2$
is rotated at a speed of $60 \mathrm{rad} / \mathrm{s}$. Because of
the friction at the axle, it comes to rest in 5.0 minutes. Find a. The average torque of the friction. B. the total work done by the friction and c. the angular momentum of the wheel 1 minute before it stops rotating.
26. Because of the friction between the water in oceans with the earth's surface the rotational kinetic energy of the earth is continuously decreasing. If earth's angular speed decreases by $0.0016 \mathrm{rad} /$ day in 100 years, find the average torque of the friction on the earth. Radius of the earth is 6400 km and its mass is $6.0 \times 10^{24} \mathrm{~kg}$.

- Watch Video Solution

27. A flywheel rotating at a speed of 600 rpm about its axis is brought to rest by applying a constant torque for 10 seconds. Find the angular deceleration and angular velocity 5 second after the application of the torque.

- Watch Video Solution

28. A wheel of mass 10 kg and radius 0.2 m is
rotating at an angular speed of 100 rpm , when
the motion is turned off. Neglecting the
friction at the axis. Calculate the force that must be applied tangentially to the wheel to bring it to rest in 10 rev . Assumed wheel to be a disc.

D Watch Video Solution

29. A cylinder rotating at an angular speed of
$50 \mathrm{rev} / \mathrm{s}$ is brought in contact with an identical stationary cylinder. Because of the kinetic friction, torques act on the two cylinders, accelerating the stationary one and
decelerating the moving one. If the common magnitude of the acceleration and deceleration be one revolution per second square, how long will it take before the two cylinders have equal angular speed?

D Watch Video Solution

30. A body rotating at $20 \mathrm{rad} / \mathrm{s}$ is acted upon by a constant torque providing it a deceleration of $2 \frac{r a d}{s^{2}}$. At what time will the
body have kinetic energy same as the initial value if the torque continues to act?

D Watch Video Solution

31. A light rod of length 1 m is pivoted at its
centre and two masses of 5 kg and 2 kg are
hung from the ends as shown in the figure.

Find the initial angular acceleration of the rod assuming that it was horizontal in the
beginning.

- Watch Video Solution

32. A wheel of mass 1.4 kg and radius 0.4 m is
mounted on a frictionless, horizontal axle as
shown in Fig. 7.2.50. Alight string wrapped around the rim supports a mass of 2 kg . What is the angular acceleration of the wheel and
the tangential acceleration of a point on the
rim ? Also find the tension in the string.

- Watch Video Solution

33. Figure shows two blocks of masses m and
M connected by a string passing over a pulley.

The horizontal table over which the mass m
slides is smooth. The pulley has a radius r and moment of inertia I about its axis and it can
freely rotate about this axis. Find the acceleration of the mass M assuming that the
string does not slip on the pulley.

- Watch Video Solution

34. A string is wrapped on a wheel of moment of inertia $0.20 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$ and radius 10 cm and goes through a light pulley to support a block of mass 2.0 kg as shown in figure. Find the
acceleration of the block.

D Watch Video Solution
35. Suppose the smaller pulley of the previous
problem has its radius 5.0 cm and moment of inertia $0.10 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$. Find the tension in the part of the string joiningk the pulleys.

D View Text Solution

36. The pulleys in figure are identical, each
having a radius R and moment of inertia I . Find
the acceleration of the block M.

- Watch Video Solution

37. The pulleys in figure are identical, each
having a radius R and moment of inertia I. Find
the acceleration of the block M.

- Watch Video Solution

38. The pulley shown in figure has a radius 10 cm and moment of inertia $0.5 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$ about its axis. Assuming the inclined planes to be
frictionless, calculate the acceleration of the 4.0 kg block.

- Watch Video Solution

39. Solve the previous problem if the firction coefficient between the 2.0 kg block and the plane below it is 0.5 and the plane below the 4.0 kg block is frictionless.
40. A uniform metre stick of mass 200 g is suspended from the ceiling through two vertical strings of equal lengths fixed at the ends. A small object of mass 20 g is placed on the stick at a distance of 70 cm from the left end. Find the tensions in the two strings.
41. A uniform ladder of length 10.0 m and mass
16.0 kg is resting against a vertical smooth wall making an angle of 37° with it. An electrian weighing 60.0 kg climbs up the ladder. If the stays on the ladder at a point 8.00 m from the lower end, what will be normal force and the force of friction on the ladder by the ground? What should be the minimum coefficient of friction for the electrician to work safely?
42. Suppose the friction coefficient between
the ground and the ladder of the previous problem is 0.540 . Find the maximum weight of a mechanic who could go up and do the work from the same position of the ladder.

D View Text Solution

43. A 6.5 m long ladder rests against as vertical
wall reaching a height of 6.0 m . A 60 kg man
stands hlf way up the ladder. A. Find the
torque of the force exerted by the man on the ladder bout the upper end of the ladder. b.Assuming the weight of the ladder of be negligible as compared to the man and assuming the wall to be smooth find the force exerted by the ground on the ladder.

D View Text Solution

44. the door of an almirah is 6 ft high, 1.5 ft
wide and weights 8 kg . The door is supported
by two hinges situated at a distance of 1 ft
from the ends. If the magnitude of the forces exerted by the hinges on the door are equal find this magnitude.

D Watch Video Solution

45. A ladder of length $5 m$ is placed against a smooth wall as shown in figure. The coefficient or friction is μ between ladder and ground.

What is the minimum value of μ, If the ladder
is not to slip?
$A B=5 \mathrm{~m}$
$A O=4 \mathrm{~m}$
$O B=3 \mathrm{~m}$
$0 \quad B$

D Watch Video Solution

46. A uniform rod of mass 300 g and length 50
cm rotates at a uniform angular speed of 2
$\mathrm{rad} / \mathrm{s}$ about an axis perpendicular to the rod through an end. Calculate a. the angular momentum of the rod about the axis of rotation b. the speed of the centre of the rod and c. its kinetic energy.

D Watch Video Solution

47. A uniform square plate of mass 2.0 kg and edge 10 cm rotates about one of its diagonals under the action of a constant torque of 0.10

Nm. Calculate the angular momentum and the
kinetic energy of the plate at the end of the fifth second after the start.

D Watch Video Solution

48. Calculate the ratio of the angular momentum of the earth about its axis due to its spinning motion to that about the sun due to its orbital motion. Radius of the earth $=6400 \mathrm{~km}$ and radius of the orbit of the earth about the sun $=1.5 \times 10^{8} \mathrm{~km}$.
49. Two particles of masses m_{1} and m_{2} are joined by a light rigid rod of length r. The system rotates at an angular speed ω about an axis through the centre of mass of the system and perpendicular to the rod. Show that the angular momentum of the system is
$L=\mu r^{2} \omega$ where μ is the reduced mass of the
system defined as $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$

- Watch Video Solution

50. A dumb bell consists of two identicasl
small balls offmss $1 / 2 \mathrm{~kg}$ each connected to
the ends of a 50 cm long light rod. The dumb bell is rotating about a fixed axis through the centre of the rod and perpendicular to it t an angular speed of $10 \mathrm{rad} / \mathrm{s}$. An impulsive force of average magnitude 5.0 N acts on of the masses in the direction of its velocity for 0.10 s .

Find the new angular velocity of the system.

D Watch Video Solution

51. A wheel of moment of inertia $0.500 \mathrm{~kg}-m^{2}$ and radius 20.0 cm is rotating about its axis at an angular speed of 20.0 rad/s. It picks up a stationary particle of mass 200 g at its edge. Find the new angular speed of the wheel.

D Watch Video Solution

52. A diver having a moment of inertia of $6.0 \mathrm{~kg}-\mathrm{m}^{2}$ about an axis through its centre of mass rotates at an angular speed of $2 \mathrm{rad} / \mathrm{s}$
about this axis. If he folds his hands and feet to decrease the moment of inertia to 5.0 kg $\mathrm{m}^{\wedge} 2^{\wedge}$ what will be the new angular speed?

- Watch Video Solution

53. A boy is seated in a revolving chair revolving at an angular speed of 120 revolutions per minute. Two heavy balls form part of the revolving system and the boy can pull the balls closer to himself or may push them apart. If by pulling the balls closer, the
boy decreases the moment of inertia of the system from $6 k g-m^{2} \rightarrow 2 k g-m^{2}$ what will be the new angular speed?

D Watch Video Solution

54. A boy is sitting on a horizontal platform in
the shape of a disc at a distance of 5 m from its
centre. The boy begins to slip when the speed
of wheel exceeds 10 rpm . The coefficient of friction between the boy and platform is:
$\left(g=10 m s^{-2}\right)$
55. A wheel of moment of inertia $0.10 \mathrm{~kg}-\mathrm{m}^{2}$
is rotating about a shaft at an angular speed of $160 \frac{\mathrm{rev}}{\mathrm{min}}$. A second wheel is set into rotation at $300 \mathrm{rev} /$ minute and is coupled to the same shaft so that both the wheels finally rotate with as common angular speed of 200 $\mathrm{rev} /$ minute. Find the moment of inertia of the second wheel.
56. A kid of mass M stands at the edge of a platform of radius R which can be freely rotated about its axis. The moment of inertia of the platform is I. The system is at rest when
a friend throws as ball of mass m and the kid
catches it. If the velocity of the ball is v horizontally along the tangent to the edge of the platform when it was caught by the kid
find the angular speed of the platform after the event.

Watch Video Solution

57. Suppose the platform of the previous problem is brought to rest with the ball in tehhad of the kid standin on the rim. The kid throuws the ball horizontaly to his friend in a direction tangentias to the rim with a speed v as seen by his friend. Find the angular velocity wilth which the platform will start rotating.
58. Suppose the platform with the kid in the previous problemis rotting in anticlockwise directioin at an angular speed ω. The kid starts walking along the rim with a speed v relative to the platform also in the anticlockwise direction. Find the new angular speed of the platform.
59. A uniform rod of mass m and length I is
struck at an end by a force F perpendicular to
the rod for a short time interval t. Calculate
a. the speed of the centre of mass ,b. the
angular speed of the rod about centre of mass, c. the kinetic energy of the rod and d.
the angular moment of the rod about the centre of mass after the force has stopped to
act. Assume that t is so small that the rod does not apreciably change its direction while the force acts.

View Text Solution

60. A uniform rod of length L lies on a smooth
horizontal table. A particle moving on the table strikes the rod perpendicularly at an end and stops. Find the distance travelled by the centre of the rod by the time it turns through
a right angle. Show that if the mass of the rod
is four times that of the particle, the collision is elastic
61. Suppose the particle of the previous problem has a mass m and a speed v before
the collision and it sticks to the rod after the collision. The rod has a mass M. a. Find the velocity of the particle with respect to C of the system consituting the rod plus the particle. b.

Find the velociyt of the particle with respect to

C before the collision. c. Find the velocity of
the rod with respect to C before the colision.
e. find the moment of inertia of the system
about the vertical axis through the centre of
mass C after the collision. f. Find the velociyt
of the centre of mass C and the angular velocity of the system about the centre of mass after the collision.

D View Text Solution

62. Two small bals A and B, each of mass m, are
joined rigidlyl by a light horizontal rol of lengh
L. The rod is clasmped at the centre in such a way that it c an rotate freely about a verticl axis through its centre. The systemis rotated with an angualr speed ω about the axis. A
particle P of masss m kept at rest sticks to the ball A as the ball collides with it. Find the new angular speed of the rod.

D View Text Solution

63. Two small balls A and B each of mass m, are
joined rigidly to the ends of a light rod of
length L figure. The system translates on a frictionless horizontal surface with a velocity
v_{0} in a direction perpendicular to the rod. A particle P of mass kept at rest on the surface
sticks to the ball A as the ball collides with it .

Find

a. the linear speeds of the balls A and B after
the collision, b. the velocity of the centre of mass C of the system $A+B+P$ and c. the angular speed of the system about C after the collision.

64. Suppose the rod with the balls A and B of
theprevious problem is clamped at the centre in such a way that it ca rotate freely about a horizontal axis through the clamp. The system is kept at rest in the horizontal position. A particle P of the same mass m is dropped from a heigh h hon the ball B. The particle collides with B and sticks to it. a. Find the angular momentum and the angular speed of the system just after the collision. b. What should
be the minimum value of h so that the system makes a full rotation after the collision.

D View Text Solution

65. Two masses M and m are connect by a light string gong over a pulley of radis r. The pulley
is free to rotate about its axis which is kept horizontal. The moment of inertia of the pulley about the axis is I . The system is releaed from rest. Find the angular momentum fo teh system when teh mass Mhas descended
through a height h. The string does not slip over the pulley.

D Watch Video Solution

66. The pulley shown in figure has a radius of

20 cm and moment of inertial $0.2 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$. The string going over it is attached at one end to a
vertical sprign of spring constant $50 \mathrm{~N} / \mathrm{m}$ fixed
from below and supports a 1 kg mas at other end. The system is released from rest with the spring at its natural length. Find the speed of
the block when it has desceds through 10 cm .
Take $g=10 \frac{m}{s^{2}}$.

D Watch Video Solution

67. A metre stick is is held verticaly with one end on a rough horizontal floor. It is gently
alowed to fal on the floor. Assuming that the end ast the floor does not slip find the angular speed of the rod when it hits the floor.

D View Text Solution

68. A metre stick weighing 240 g is pivoted at
its upper end in such a way that it can freely rotate in a vertical plane through this end figure. A particle of mass 100 g is attached to the upper end of the stick through a light sting of length 1 m . Initially the rod is kept
veritcal and the string horizontal when the
system is released from rest. The particle colides with the lower end of the stick and sticks there. Find the maximum angle through which the stick will rise.

Figure 10-E9

69. A uniform rod is placed vertically on a smooth surface and then released. Then,

- Watch Video Solution

70. A cylinder rolls on a horizontal plane surface. If the speed of the centre is $25 \mathrm{~m} / \mathrm{s}$, what is the speed of the highest point?

D
 Watch Video Solution

71. A sphere of mass m rolls on a plane surface.

Find its kinetic energy at an instant when its
centre moves with speed v .

D Watch Video Solution

72. A string is wrapped over the edge a uniform disc and the free end is fixed with the ceiling. The disc moves down, unwinding the
string. Find the downward acceleration of the disc.
73. A small spherical ball is released from a point at a height h on a rough track shown in figure. Assuming that it does not slip anywhere, find its linear speed when it rolls on the horizontal part of the track.

- Watch Video Solution

74. A small disc is set rolign wioth a speed v on
the horizontal part of the track of the previous
problem from right to left. To what height will
it climb up the curved part?

- View Text Solution

75. A sphere starts rolling down can incline of inclination theta. Find the speed of its centre when it has covered a distance I.
76. A hollow sphere is released from the top of an inlcined plane of inclination θ. A. What
should be the minimum coefficientof friction between the shphere and the plane to prevent
sliding? B. Find the kinetic energy of the ball
as it moves down a length I on the incline if
the friction coefficient is half the value calculated in part a.

View Text Solution

77. Consider the situation as shown in the
figure. A solid sphere of mass m is released
from rest from the rim of a hemispherical cup so that it rolls along the surface. Find the normal contact force between the solid sphere
and the cup at the bottom most point.

78. Figure shows a rough track a portion of which is in the form of a cylinder of radius R.

With what minimum linear speed should as
sphere of radius r be set rolling on the horizontal part so that it completely goes round the circle on the cylindrical part.

- Watch Video Solution

79. Figure shows a smasll sphereical bal of mass m rolling down the loop track. Thebasll is released on the linear portion at a verticla height H from the lowest point. The circular part show has a radius R.
a. find the kinetic energy of the ball when it is
at a point where the radius makes angle θ with the horizontal.

Find the radial and the tangential
accelerations of the cente when the ball is at
A. c. find the bnormal force and the frictionasl
force acting on the ball if $\mathrm{H}=60 \mathrm{~cm}, \mathrm{R}=10 \mathrm{~cm}$
$\theta=0$ and $\mathrm{m}=70 \mathrm{fg}$.

D View Text Solution

80. A thin spherical shell of radius R lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?

- Watch Video Solution

81. A uniform sphere of radius R is palced on a rough horizontal surface and given a linear velocity v_{0} and an angular velocity ω_{0} as shown. If the angular velocity and the linear velocity both become zero simultaneously, then

D
 Watch Video Solution

82. A uniform wheel of radius R is set lying on
a rough horizontal surface is hit by as cue is
such a way that the line of action passes
thruogh the centre of the shell. As a result the
shelll starts movign with a linear speed v without any initial angular velocity. Find the linear speed of the shell after it starts pure rolling on the surface.

D Watch Video Solution

83. A holow sphere of radius R lies on a smoth
horizontal surface. It is pulle dby a horizontl
force acting tasngentially from the highest point. Find the distance travelled by the sphere durint eh time it makes oen full rotation.

D View Text Solution
84. A solid sphere of mass 0.50 kg is kept on a
horizontal surface. The coefficient of static
friction between the surfaces in contact is $2 / 7$.

What maximum force can be applied at the highest point in the horizontal direction so that the sphere does not slip on the surface?

- Watch Video Solution

85. A solid sphere is set into motion on a
rough horizontal surfce with a linar speed v in
the forward direction and an angular speed
v / R in the anticlockwise direction as shown
infigure. Find the linear speed of the sphere a.
where it stops rotating and b. when slipping finally ceases sand pure rolling starts.

D View Text Solution

86. A solid sphere rolling on a rough horizont surface with a lilner speed v collides elastically with a fixed, smooth, vertical wall. Find the
speed of the sphere after it has started pure rolling in the backward direction.

D Watch Video Solution

Questions For Short Answer

1. Can an object be in pure translation as well as in pure rotation?

D Watch Video Solution

2. A simple pendulum is a pont mass suspended by a light thread from a fixed point.

The particle is displaced towards one side and then released. It makes small ocillations. Is the motion of such a simple pendulum a pure rotation? If yes, wher is the axis of rotation?

D Watch Video Solution

3. In a rotating body $a=\alpha r$ and $v=\omega r$.

Thus $\frac{a}{\alpha}=\frac{v}{\omega}$. Can you use the theorems of
ratio and proportion studied in algebra so as to write
$\frac{a+\alpha}{a-\alpha}=\frac{v+\omega}{v-\omega}$

D Watch Video Solution

4. A ball is whirled in a circle by attaching it to
a fixed point with a string. Is there an angular rotation of the ball about its centre? If yes, is
this angular velocity equal to the angular velocity of the ball about the fixed point?
5. The moon rotates about the earth in such a way that only one hemisphere of the mon faces the earth figure. Can we ever see the other face of the moon from the earth? Can a person on the moon ever see all the faces of
the earth?

6. The torque of the weight of any body about any vertical axis is zero. Is it always correct?

- Watch Video Solution

7. The torque of a force \vec{F} about a point is defined as $\vec{\Gamma}=\vec{r} \times \vec{F}$. Suppose
\vec{r}, \vec{F} and $\vec{\Gamma}$ are all nonzero. Is $\vec{r} \times \vec{\Gamma}| | \vec{F}$ always true? Is it ever true?
8. A heavy particle of mass m falls freely near the earth's surface.Whati si the torque acting on this particle about a point 50 cm east to the lie of motiin? Does this a point 50 cm east to the line of motion? Does this toruque produce any angular accelertio in the particle?

- Watch Video Solution

9. If several forces act on a particle, the total
torque on the particle mauy be obtained by
first finding the resultant force and then
taking torque of this resultant. Prove this. Is
this result valid for the forces actin on difeent partivles of a body in such a way that their lines of acting intersect at a common point?

D Watch Video Solution

10. If the sum of all the forces acting on a body
is zero, is it necessarily in equilibrium ? If the sum of all the forces on a particle is zero, is it necessarily in equilibrium?
11. If the angular momentum of a body is
found to be zero about a point is it necessary
that it will also be zero about a different point?

D Watch Video Solution

12. If the resultant torque of all the forces
acting on a body is zero about a point is it necessary that it will be zero about any other point?
13. A body is in translational equilibrium under
the sctin of coplanar forces. If the torque of these force is zero about a point is it necessary that it will also be zero abut any other point?

- Watch Video Solution

14. A rectangular brick is kept on a table with a part of its length projecting out. It remains at rest if thelength projected is slightly less than half the total length but it falls down if the length projected is slightly more than half the total length. Give reason.

D Watch Video Solution

15. When a fat person tries to touch hit toes,
keepig the legs straight he generally falls.

Explain with reference to figure.

16. A ladder is kept at rest with is upper end against a wall and the lower end on the ground. The ladder is more like to slip when a mass stands on it at the top than at the bottom. Why ?

- Watch Video Solution

17. The density of a rod $A B$ continuously increases from A to B. Is it easier to set it in rotatio by clamping ilt at A and applying a
perpendicular force at B or by clamping it at B and applying the force at A?

D Watch Video Solution

18. When tall buildings are constructed on earth, the duration of day night slightly increases. Is it true?

D Watch Video Solution

19. If the ice at the poles melts and flows towasrdsd the equato, how will it afect the durtion of day night?

D Watch Video Solution

20. A hollow sphere, a solid sphere, a disc and
a ring all having same mass nd radius are rolled on an inclined plane. If no slipping takes place, which one will take the smallest time to cover a given length?
21. A sphere rolls on a horizontal surface. Is there any point of the sphere which has a vertical velocity?

D Watch Video Solution

