©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

SAMPLE PAPER -6 (SOLVED)

1. A cyclist moving on a circular track of radius

40 m completes half a revolution in 40 sec
A. 0
B. $2 m / s$
C. $4 m / s$
D. $2 \pi m / s$

Answer: B

D Watch Video Solution
2. A wheel has angular acceleration of
$3.0 \mathrm{rad} / s^{2}$ and an initial angular speed of
$2.00 \mathrm{rad} / s$. In a time of 2 seconds it has rotated through an angle of (in radian)
A. 10
B. 12
C. 4
D. 6

Answer: A
3. The sum of moments of masses of all the particles in a system about the center of mass is
A. may be greater than zero
B. may be less than zero
C. may be equal to zero
D. always zero

Answer: D
4. The dimensional formula of coefficient of viscosity is
A. $M L^{-2} T^{-2}$
B. $M L^{-2} T^{-1}$
C. $M L^{-1} T^{-1}$
D. $M^{-1} L^{-1} T^{-1}$

Answer: C

5. Action and reaction
A. acts on same object
B. acts on two different objects
C. have resultant not zero
D. acts on the same direction

Answer: B
(Watch Video Solution
6. A spring is stretched by applying load to its free end. The strain produced in the spring is
A. volumetric
B. shear
C. longitudinal
D. longitudinal and shear

Answer: D

D Watch Video Solution

7. A rope is wound round a hollow cylinder of

 mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N .A. $0.25 \mathrm{rad} s^{-2}$
B. $25 \mathrm{rad} s^{-2}$
C. $5 m s^{-2}$
D. $25 m s^{-2}$

Answer: B
8. The potential energy of a simple harmonic oscillator when the particle is halt way to its end point is (E is total energy)

$$
\begin{aligned}
& \text { A. } \frac{2}{3} E \\
& \text { B. } \frac{1}{3} E \\
& \text { C. } \frac{1}{4} E \\
& \text { D. } \frac{1}{2} E
\end{aligned}
$$

Answer: C

9. A particle executes simple harmonic motion

with an angular velocity and maximum acceleration of $3.5 \mathrm{rad} / \mathrm{s}$ and $7.5 \mathrm{~m} / \mathrm{s}^{2}$ respectively. Amplitude of the oscillation is
A. 0.36
B. 0.28
C. 0.61
D. 0.53

Answer: C

- Watch Video Solution

10. If the tension and diameter of a sonometer
wire of fundamental frequency n is doubled and density is halved, then its fundamental frequency will become
A. $\frac{n}{4}$
B. $\sqrt{2} n$
C. n
D. $\frac{n}{\sqrt{2}}$

Answer: C

D Watch Video Solution

11. Universal time is based on :
A. Joule-Thomson effect
B. Newton's particle theory
C. Joule's effect
D. None of the above

Answer: D

- Watch Video Solution

12. Work done by 0.1 mole of a gas at $27^{\circ} \mathrm{C}$ to
double its volume at constant pressure is
$(\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} / \mathrm{K})$
A. 54 cal
B. 60 cal
C. 546 cal
D. 600 cal

Answer: B

- Watch Video Solution

13. When a lift is moving upwards with acceleration a, then time period of simple pendulum in it will be
A. $2 \pi \sqrt{\frac{l}{g+a}}$
B. $2 \pi \sqrt{\frac{g+a}{l}}$
C. $\frac{1}{2 \pi} \sqrt{\frac{l}{g+a}}$
D. $\frac{1}{2 \pi} \sqrt{\frac{g+a}{l}}$

Answer: A

D Watch Video Solution

14. As disc is rotating with angular speed ω. If a child sits on it, what is conserved?
A. linear momentum
B. angular momentum
C. kinetic energy

D. potential energy

Answer: B

D Watch Video Solution

15. The vectors \vec{A} and \vec{B} are such that $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$. The angle between the two vector is
A. 45°
B. 60°
C. 75°
D. 90°

Answer: D

- Watch Video Solution

Part li

1. Velocity - time graph of a moving object is
shown below. What is the acceleration of the
object? Also draw displacement - time graph

for the motion of the object?

D Watch Video Solution

2. Can a body subjected to a uniform acceleration always move in a straight line.

D Watch Video Solution

3. Calculate the viscous force on a ball of

radius Imm moving through a liquid of
viscosity $0.2 \mathrm{Nsm}^{-2}$ at a speed of $0.07 \mathrm{~ms}^{-1}$.

D Watch Video Solution

4. Calculate the work done by a force of 30 N in lifting load of 2 g to a height of 10 m $\left(g=10 m s^{-2}\right)$.

- Watch Video Solution

5. Why are shockers used in automobiles like
6. Assuming the earth to be a sphere of uniform mass density, how much would a body weigh half way down to the centre of the earth if it weighed 250 N on the surface ?

- Watch Video Solution

7. How do you deduce that two vectors are perpendicular?

Watch Video Solution

8. An air bubble of radius r in water is at a depth h below the water surface at some instant if P is atmospheric pressure and $d \& T$ are the density and surface tension of water, what is the pressure inside the bubble?

D Watch Video Solution

9. Define beats.

Part Iit

1. Centripetal acceleration is given by
(Watch Video Solution
2. Write any five properties of vector product of two vectors.

D Watch Video Solution
3. Show that pressure exerted by the gas is two - thirds of average kinetic energy per unit volume of the gas molecules.

D Watch Video Solution

4. Derive the expression for gravitational potential energy.

D Watch Video Solution

5. Calculate the value of g in the following two
cases:
(a) If a mango of mass $\frac{1}{2} \mathrm{~kg}$ falls from a tree
from a height of 15 metres, what is the acceleration due to gravity when it beigns to fall?
(b) Consider a satellite orbiting the Earth in a circular orbit of radius 1600 km above the surface of the Earth. What is the acceleration experienced by the satellite due to Earth's gravitational force?
6. Explain the variation of ' g ' with latitude.

D Watch Video Solution

7. A bullet of mass 50 g is fired from below into a suspended object of mass 450 g . The object rises through a height of 1.8 m with bullet remaining inside the object. Find the speed of the bullet. Take $g=10 m s_{-2}$
8. If the piston of a container is pushed fast inward .Will the ideal gas equation be valid in the intermediate stage ? If not, Why ?

- Watch Video Solution

9. Calculate how many times more intense is 90 dB sound compared to 40 dB sound?
10. Obtain an expression for the time period T of a simple pendulum. [The time period T depend upon (i) mass I of the bob (ii) length m of the pendulum and (iii) acceleration due to gravity g at the place where pendulum is suspended.

Assume the constant $k=2 \pi$]

Watch Video Solution

2. Derive an expression for escape speed.

D Watch Video Solution

3. Derive an expression for kinetic energy in pure rolling.

- Watch Video Solution

4. A shell of mass 200 gm is ejected from a
gun of mass 4 kg by an explosion that
generates 1.05 kJ of energy. Calculate the initial velocity of the shell

D Watch Video Solution

5. State and prove parallel axis theorem

D Watch Video Solution

6. Moment of inertia of a circular wire of mass
M and radius R about is its diameter is

D Watch Video Solution
7. Prove the law of conservation of linear momentum use it to find the recoil velocity of a gun when a bullet is fired from it

D Watch Video Solution

8. Derive an expression for escape speed.

D Watch Video Solution

9. State Newton's II law of motion.

D Watch Video Solution

10. Gas exerts pressure on the walls of the container

D Watch Video Solution

11. Explain with graphs the difference between
work done by a constant force and by a
variable force.

D Watch Video Solution

12. State Newton's II law of motion.

- Watch Video Solution

