©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

SAMPLE PAPER 11 (UNSOLVED)

Part I

1. Force F is given by $F=a t+b t^{2}$. Where "t"
is time. What are the dimensions of "a" and
A. $M L T^{-3}$ and $M L T^{-4}$
B. $M L T^{-1}$ and $M L T^{0}$
C. $M L T^{-3}$ and $M L T^{4}$
D. $M L T^{-4}$ and $M L T$

Answer: A

D Watch Video Solution

2. Unit of impulse...........
A. Ns
B. $N s^{-1}$
C. Nm
D. $N m^{-1}$

Answer: A

D Watch Video Solution
3. A ball with an initial momentum ' P ' collides
normally with a rigid wall. If P_{1} is the linear
momentum after the perfectly elastic collision
A. $P_{1}=P$
B. $P_{1}=-P$
C. $P_{1}=-2 P$
D. $P_{1}=2 P$

Answer: C

D Watch Video Solution
4. If a person moving from pole to equator of
the earth then the centrifugal force acting on him is
A. increases
B. decreases
C. remains the same
D. increases and then decreases

Answer: A

D Watch Video Solution
5. If the potential energy of the particle is
$\alpha-\frac{\beta}{2} x^{2}$, then force experienced by the particle is:

$$
\begin{aligned}
& \text { A. } F=\frac{\beta}{2} x^{2} \\
& \text { B. } F=\beta x \\
& \text { C. } F=-\beta x \\
& \text { D. } F=-\frac{\beta}{2} x^{2}
\end{aligned}
$$

Answer: B
6. In a simple harmonic oscillation, the acceleration against displacement for one complete oscillation will be.
A. an ellipse
B. a circle
C. a parabola
D. a straight line

Answer: A

D Watch Video Solution

7. The ratio of the radii of gyration of a circular

 disc to that of circular ring, each of same mass and same radius about their axes isA. $\sqrt{3}: \sqrt{2}$
B. $1: \sqrt{2}$
C. $\sqrt{2}: 1$
D. $\sqrt{2}: \sqrt{3}$

Answer: B

- Watch Video Solution

8. The average translational kinetic energy of gas molecules depends on
A. number of moles and T
B. only on T
C. P and T
D. P only

Answer: A
(D) Watch Video Solution
9. When a particle oscillates simple harmonically, its potential energy varies periodically. If the frequency of oscillation of the particle is n, the frequency of potential energy variation is.
A. $\frac{n}{2}$
B. n
C. 2 n
D. 4 n

Answer: C
10. A body is floating in a liquid with $\frac{1}{5}$ of its volume outside the liquid. If the relative density of the body is 0.9 , that of the liquid is
A. 0.9×5
B. $0.9 \times \frac{5}{4}$
C. $0.9 \times \frac{4}{5}$
D. 0.9×4

Answer: B

- Watch Video Solution

11. Two masses M_{1} and m_{2} are experiencing
the same force where $m_{1}<m_{2}$ the ratio of
their acceleration $\frac{a_{1}}{a_{2}}$ is
A. 1
B. greater than 1
C. less than 1
D. all of above

D Watch Video Solution

12. Boiling water is changing into steam.Under
this condition the specific heat of water is
A. zero
B. one
C. infinite
D. less than one

Answer: C

D Watch Video Solution

13. In an isochoric process we have
A. $W=0$
B. $Q=0$
C. $\Delta U=0$
D. $\Delta T=0$
14. A particle is executing simple harmonic motion given by $x=5 \sin \left(4 t-\frac{\pi}{6}\right)$. The velocity of the particle when its displacement is 3 units is
A. $\frac{2 \pi}{3}$ unit
B. $\frac{5 \pi}{6}$ units
C. 20 units
D. 16 units

Answer: D

D Watch Video Solution

15. Compute the distance between anti-node and neighbouring node .
A. λ
B. $\frac{\lambda}{2}$
C. $\frac{\lambda}{3}$
D. $\frac{\lambda}{4}$

Answer: D

- Watch Video Solution

Part li

1. Check the correctness of the equation
$\frac{1}{2} m v^{2}=$ mgh using dimensional analysis method.

2. Define a vector. Give examples.

- Watch Video Solution

3. What are interial frames ?

D Watch Video Solution

4. A motor cyclist is going in a vertical circle.

What is the necessary condition so that he may not fall down ?
5. Two point masses 3 kg and 5 kg are at 4 m and 8 m from the origin on X -axis. Locate the position of center of mass of the two point masses (from the origin and (1) from 3 kg mass.

D Watch Video Solution

6. What happens to the pressure inside a soap
bubble when air is blown into it ?

- Watch Video Solution

7. Which one of these is more elastic, steel or rubber? Why?

- Watch Video Solution

8. Eiffel tower is made up of iron and its height
is roughly 300 m . During winter season
(January) in France the temperature is $2^{\circ} \mathrm{C}$ and in hot summer its average temperature $25^{\circ} \mathrm{C}$. Calculate the change in height of Eiffel
tower between summer and winter. The linear
thermal expansion coefficient for iron
$\alpha=10 \times 10^{-6}$ per ${ }^{\circ} C$

D Watch Video Solution

9. The speed of a wave in a certain medium is
$900 \mathrm{~m} / \mathrm{s}$. If 3000 waves passes over a certain
point of the medium in 2 minutes, then compute its wavelength.

- Watch Video Solution

1. Write any two limitations of dimensional analysis. Give relevant examples.

D Watch Video Solution

2. Find the angle between two vectors.
$A=\hat{i}+2 \hat{j}-\hat{k}$ and $B=-4 \hat{i}+\hat{j}-2 \hat{k}$.

D Watch Video Solution
3. A 40 gm of bullet moving at $250 \mathrm{~ms}^{-1}$ stops after penetrating 20 cm of wood. Calculate the average force by the bullet. ?

- Watch Video Solution

4. Discuss the force - displacement graph for a spring.

- Watch Video Solution

5. A wire of length 2 m with the area of cross
section $10^{-6} \mathrm{~m}^{2}$ is used to suspend a load of
980 N. Calculate (i) The stress developed in the wire (ii) the strain and (iii) the energy stored. Given $Y=12 \times 10^{10} \mathrm{Nm}^{-2}$.

- Watch Video Solution

6. Obtain the Coefficient of performance (COP).
(β).

7. State Bernoulli's theorem.

- Watch Video Solution

8. Write down the postulates of kinetic theory of gases.
9. The maximum velocity of a particle , executing simple harmonic motion with an amplitude 7 mm is $4.4 \mathrm{~ms}^{-1}$. The period of oscillation is

D Watch Video Solution

Part lv

1. Obtain in expression for the time period T of
a simple pendulun. The time period depend
upon (i) mass 'm' of the bob (ii) length 'l' of the pendulum and (iii) acceieration due to gravity g at the place where the pendulum is suspended. (Constant $k=2 \pi)$ i.e.

- Watch Video Solution

2. Explain the types of equilibrium with suitable examples

3. Explain in detail the triangle law of addition.

- Watch Video Solution

4. Derive equations of uniformly acceleration motion by calculus method.

- Watch Video Solution

5. Explain why a cyclist bends while negotiating a curve road?

- Watch Video Solution

6. What are the limitations of the first law of thermodynamics?

D Watch Video Solution

7. State and prove Bernoulli's theorem for a
flow of incompressible, non-viscous, and streamlined flow or fluid.
8. Derive Mayer's relation for an ideal gas.

D Watch Video Solution

9. Derive an expression for escape speed.

D Watch Video Solution

10. Explain the different types of modulus of elasticity.
