©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

 ENGLISH)
SOLVED PAPER 17 (UNSOLVED)

Part I

1. If E and B respectively, represent electric field and magnetics induction field, then the ratio E
and B has the dimensions of
A. angle
B. acceleration
C. velocity
D. displacement

Answer: C
2. The component of position vector \vec{r} along x - axis will maximum value if
A. \vec{r} is along x-axis
B. \vec{r} makes an angle of 45° with y -axis
C. \vec{r} is along y-axis
D. \vec{r} is -ve along u-axis

Answer: A

D Watch Video Solution

3. A ship of mass $3 \times 10^{6} \mathrm{~kg}$ initially at rest is pulled by a force $6 \times 10^{4} N$ through a distance of 4 m . The speed of the ship is (Assume resistivity of water is negligible)
A. $1.5 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $0.5 \mathrm{~m} / \mathrm{s}$
D. $0.4 \mathrm{~m} / \mathrm{s}$

Answer: D
4. Two equal masses m_{1} and m_{2} are moving along the same straight line with velocities $5 m s^{-1}$ and $-9 m s^{-1}$ respectively. If the collision is elastic, then calculate the velocities after the collision of m_{1} and m_{2}, respectively
A. $-9 m s^{-1}$ and $5 m s^{-1}$
B. $-4 m s^{-1}$ and $10 m s^{-1}$
C. $10 m s^{-1}$ and $0 m s^{-1}$
D. $5 m s^{-1}$ and $1 m s^{-1}$

- Watch Video Solution

5. An air column in a pipe which is closed at one end, will be in response with the vibrating body of frequency 83 Hz . Then the length of the air column is
A. 1.5 m
B. 0.5 m
C. 1.0m

D. 2.0 m

Answer: C

D Watch Video Solution

6. Moment of force is called
A. angular momentum
B. torque
C. couple
D. none

Answer: B

D Watch Video Solution

7. For a planet having mass equal to the Earth
but radius is one fourth of radius of the Earth,
then escape velocity for this planet will be.
A. $11.2 \mathrm{~km} / \mathrm{s}$
B. $22.4 \mathrm{~km} / \mathrm{s}$
C. $3.6 \mathrm{~km} / \mathrm{s}$

D. $44.8 \mathrm{~km} / \mathrm{s}$

Answer: B

D Watch Video Solution

8. Water in a bucket tied with rope whirled around in a vertical circle of radius 0.5 m .

Calculate the minimum velocity at the lowest point so that the water does not spill from it in the course of motion. $\left(g=10 m s^{-1}\right)$

$$
\text { A. } \sqrt{5} m s^{-1}
$$

B. $5 m s^{-1}$
C. $50 m s^{-1}$
D. $500 m s^{-1}$

Answer: A

D Watch Video Solution

9. The fractional change in volume per unit

 increase in pressure is calledA. pressure co-efficient

B. volume co-efficient

C. bulk modulus

D. compressibility

Answer: D

D Watch Video Solution

10. In slipping the rotational motion isthan the translation motion.
A. constant

B. more

C. zero
D. none of the above

Answer: B

D Watch Video Solution
11. A block of wood is floating on water at $0^{\circ} C$
with a certain volume ' V ' above the water level.

The temperature of water is slowly raised to
$20^{\circ} \mathrm{C}$. How does the volume ' V ' change with the rise in temperature?
A. remains unchanged
B. decrease continuously
C. decrease till $4^{\circ} C$ and then increase
D. increase till $4^{\circ} C$ and then decrease

Answer: D

D Watch Video Solution

12. In the given ($V-T$) diagram, what is the relation between P_{1} and P_{2} ?

A. $P_{2}=P_{1}$
B. $P_{2}=P_{1}$
C. $P_{2}<P_{1}$

D. cannot be predicted

Answer: C

D Watch Video Solution

13. The damping force on an oscillator is
directly proportional to the velocity. The units
of the constant of proportionality are
A. $k g m s^{-1}$
B. $k g m s^{-2}$

C. $k g s^{-1}$

D. kgs

Answer: C

D Watch Video Solution

14. The velocity of a particle, undergoing SHM
is v at the position. If its amplitude is doubled,
the velocity at the mean position will be.
A. $2 v$
B. 3v
C. $2 \sqrt{2}$
D. 4 v

Answer: A

- Watch Video Solution

15. Which of the following represents a wave?
A. $(\gamma-v t)^{3}$
B. $x(x+v t)$
C. $\frac{1}{x+x t}$
D. $\sin (x+x t)$

Answer: D

- Watch Video Solution

Part li

1. What are the limitations of dimensional
2. The position vector of a particle is given
$\vec{r}=2 t \hat{i}+3 t^{2} \hat{j}-5 \hat{k}$ calculate the velocity and speed of the particle at any instant ' t '.

- Watch Video Solution

3. Under what condion will a car skid on a leveled circular road ?
4. State conservation of angular momentum.

- Watch Video Solution

5. What are geostationary and polar satellites?

D Watch Video Solution

6. State Newtons Universal law of gravitaion.

D Watch Video Solution

7. Define Poisson's ratio.

D Watch Video Solution

8. Differentiate between isothermal and adiabatic process.

D Watch Video Solution
9. Compute the position of an oscillating particle when its kinetic energy and potential energy are equal.

D Watch Video Solution

Part lii

1. How can the systematic errors be minimised?

D Watch Video Solution
2. The position of an particle is given by $x=6 t+2 t^{3}$. Find out whether is motion is uniform or non - uniform.

D Watch Video Solution

3. Two bodies of masses m and 4 m are placed at a distance r. Calculate the gravitational potential at a point on the joining them where the gravitational field is zero.
4. Derive an expression for Radius of gyration.

D Watch Video Solution

5. How do you distinguish between stable and unstable equilibrium?

D Watch Video Solution
6. A cyclist while negotiating a circular path
with speed $20 \mathrm{~ms}^{-1}$ is found to bend an angle by 30° with vertical. What is the radius of the circular path? (given, $g=10 \mathrm{~ms}^{-2}$).

- Watch Video Solution

7. State the laws of simple pendulum.

- Watch Video Solution

8. The acceleration dula to gravity on the surface of moon is $1.7 \mathrm{~ms}^{-2}$. What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s ?

D Watch Video Solution

1. In a series of successive measurements in an
experiment, the readings of the period of oscillation of a simple pendulum were found to be $2.63 \mathrm{~s}, 2.56 \mathrm{~s}, 2.42,2.71 \mathrm{~s}$ and 2.80 s .

Calculate
(i) the mean value of the period of oscillation
(ii) the absolute error in eah measurement
(iii) The men absolute error (iv) the relative error (v) the percentage error. Expresss the results in proper form.
2. Mention the properties of dot product of two vectors.

D Watch Video Solution
3. Derive the kinematic equations of motion for constant acceleration.

- Watch Video Solution

4. Derive the relation between momentum and
kinetic energy.

D Watch Video Solution
5. How do you distinguish between stable and unstable equilibrium?

- Watch Video Solution

6. State and prove perpendicular axis theorem.

- Watch Video Solution

7. State and prove Bernoulli's theorem for a flow of incompressible, non-viscous, and streamlined flow or fluid.

- Watch Video Solution

8. What are processes involves in a Carnot engine?

9. In an isothermal process

D Watch Video Solution

10. Consider a mixture of 2 mole helium and 4 mole of oxygen. Compute the speed of sound in this gas mixture at 300 K .

D Watch Video Solution

