©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - HC VERMA PHYSICS
 (ENGLISH)

THE FORCES

Example

1. Suppose the exact charge neutrality does
hold not in a world and the electron has a
charge 1% less in magnitude than the proton.
Calculate the Coulomb force acting between two blocks of iron each of mass 1 kg separated by a distance of 1 m . Number of protons in an iron atom $=26$ and 58 kg of iron contains 6×10^{26} atoms.

- Watch Video Solution

Worked Out Examples

1. Figure shows two hydrogen atoms. Show on as separate diagram all the electric forces acting on different particle of the system.

D Watch Video Solution

2. Figure shows two rods each of length L placed side by side, with their facing ends
separated by a distance a. Charges $+q,-q$ reside on the rods as shown. Calculate the electric force on the $\operatorname{rod} A$ due to the $\operatorname{rod} B$. Discuss the cases when $l \gg a, a \gg 1$

- Watch Video Solution

3. Calculate the ratio of electric to gravitational force between two electrons.

- Watch Video Solution

Objective 1

1. When Neils Bohr shook hand with Werner

Heisenber, what kind of force they exerted?
A. Gravitational
B. Electromagnetic
C. Nuclear
D. Weak

Answer: B

- Watch Video Solution

2. Let E, G and N represent the magnitudes of electromagnetic, gravitational and nuclear forces between two electrons at a given separation. Then
A. $N>E>G$
B. $E>N>G$
C. $G>N>E$

D. $E>G>N$

Answer: D

D Watch Video Solution

3. The sum of all electromagnetic forces
between different particles of a system of charged particle is zero
A. only if all the particles are positively charged
B. only if all the particles are negatively charged
C. only if half the particles are positively charged and half are negatively charged
D. irrespective of the signs of the charges.

Answer: D

D Watch Video Solution

4. AS 60 kg man pushes a 40 kg man by a force of 60 N . The 40 kg man has pushed the other man with a force of
A. 40 N
B. 0
C. 60 N
D. 20 N

Answer: C::D

- Watch Video Solution

Objective 2

1. A neutron exerts a force on a proton which
A. Gravitational
B. Electromagnetic
C. Nuclear
D. Weak

Answer: A::C

2. A proton exerts a force on a proton which is

A. Gravitational
B. Electromagnetic
C. nuclear
D. Weak

Answer: A::B::C
3. Mark the correct statements:
A. The nuclear force between two protons
is always greater than the
electronmagnetic force between them.
B. The electromagnetic force between two
protons is always greater than the
gravitatinal force between them.
C. The gravitational force between two
protons may begreater than the nuclear
force between them.
D. Electromagnetic force between two protons may be greater than ther nuclear force acting between them.

Answer: B::C::D

D Watch Video Solution

4. If all matter were made of electrically neutral particles such as neutrons
A. there would be no force of friction
B. there would be no tension in the string
C. it would not be possible to sit on a chair
D. the earth could not move around the
sun

Answer: A::B::C

D Watch Video Solution

5. which of the following systems may be adequately described by classical physics?
A. motion of a cricket ball
B. motion of a dust particle
C. a hydrogen atom
D. a neutron changing to a proton

Answer: A::B

D Watch Video Solution
6. The two ends of a spring are displaced along the length of the spring. All displacements have equal magnitudes. In which case or cases the tension or compression in the spring will have as maximum magnitude?
A. the right end is displaced towards right
and the left end towards left
B. both ends are displaced towards right
C. both ends are displaced towards left

D. the right end is displaced towards left

and the left end towards right.

Answer: A::D

D Watch Video Solution

7. Action and reaction

A. act on two different objects
B. have equal magnitude
C. have opposite directions
D. have resultant zero.

Answer: A::B::C::D

D Watch Video Solution

Exercises

1. The gravitational force acting on a particle of 1 g due to a similar particle is equal to
$6.67 \times 10^{-17} N$. Calculate the separation between the particles.

- Watch Video Solution

2. Calculate the force wilth which you attract the earth.

- Watch Video Solution

3. At what distance should two charges, each equals to 1 C , be placed so that the force between them equals your weight?
4. Two sphereical bodies, each of mass 50 kg , are placed at a separation of 20 cm . Equal charges are placed on the bodies and it is found that the force of Coulomb repulsion equals the grativational attraction in magnitude. Find the magnitude of the charge placed on either body.
5. A monkey is sitting on a tree limb. The limb
exerts a normal force of 48 N and a frictional
force of 20 N . Find the magnitude of the total
force exerted by the limb on the monkey.

- Watch Video Solution

6. A body builder exerts a force of 150 N against a bullworker and compresses it by 20
cm . Caculate the spring constant of the spring
in te bullworker.
7. A satellite is projected vertically upwards
from an earth station. At what height above
the earth's surface will the force on the satellite due to the earth be reduced to half its value at the earth station? (Radius of the earth is 6400 km .)
8. Two charged particles placed at a separation of 20 cm exert 20 N of coulomb force on each other. What will be the force if the separation is increased to 25 cm ?

D Watch Video Solution

9. The force with which the erth attracts an object is called the weight of the object.

Calculate the weight of the moon from the following data: The universal constant of
gravitastion

$$
G=6.67 \times 10^{-11} N-\frac{m^{2}}{k} g^{2}
$$

mass of the moon $=7.36 \times 10^{22} \mathrm{~kg}$, mass of
the earth $=6 \times 10^{24} \mathrm{~kg}$ and the distasnce
between the earth and the $m \infty n=3.8 \times 10^{5}$
km.

D Watch Video Solution
10. Find the ratio of the magnitude of the
electric force to the grativational force acting
between two protons.
11. The average separation between the proton and the electron in a hydrogen atom in ground state is ${ }^{`} 5.3 \times x 10^{\wedge}-11 \mathrm{~m}$. a. Calculate the

Coulomb force between tehm at this separation. b. When the atom goes into its first excited state the average separation between the roton and the electron increases to four times its value in the ground state.What is th Coulomb force in this state?
12. The geostationary orbit of the earth is at a distance of about 36000 km from the earth's
surface. Find the weight of a 120 kg equipment placed in a geostationary satellite. The radius of the earth is 6400 km .

- Watch Video Solution

Questions For Short Answer

1. A body of mass m is placed on a table. The earth is pulling the body with a force mg.

Taking this force to be the action what is the reaction?

- Watch Video Solution

2. A boy is sitting on a chair placed on the floor of a room. Write as many action reaction pairs of forces as you can.
3. A lawyer alleges in court that the police has forced his client to issue a statement of confession. What kind of force is this?

D Watch Video Solution

4. When you hold a pen and write on your notebook, what kind of force is exerted by you on the pen? By the pen on the notebook? By you on the notebook?
5. Is it true the reaction of as gravitational force is always grativational, of an electromagnetic force is always electromagnetic and so on?

- Watch Video Solution

6. Suppose the magnitude of Nuclear force between two protons varies with the distance between them as shown in figure. Estimate the
ratio Nuclear force/Coulomb force for $a . x=8$
fm b. $x=4 \mathrm{fm}, \mathrm{c} . \mathrm{x}=2 \mathrm{fm}$ and $\mathrm{d} . \mathrm{x}=1 \mathrm{fm}$ (1 fm

$$
\left.=10^{-15} \mathrm{~m}\right)
$$

- Watch Video Solution

7. List all the forces acting on the block B in figure.

- Watch Video Solution

8. List all the forces acting on a. the pulley A, b.
the boy and c . the block C in figure

- Watch Video Solution

9. Figure shows a boy pulling a wagon on a road.

List as many forces as you can which are relevant with this figure. Find the pairs of forces connected by Newton's third law of
motion.

- Watch Video Solution

