©゙doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - FULL MARKS CHEMISTRY (TAMIL ENGLISH)

CHEMICAL KINETICS

Text Book Example Problems

1. The oxidation of nitric oxide (NO) $2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{(g)}$

Series of experiments are conducted by keeping the concentration of one of the reactants constant and the changing the concentration of the others.

Find out the individual overall order of the reaction.
2. Consider the oxidation of nitric oxide to form NO_{2}
$2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2_{(g)}}$
(a) Express the rate of the reaction in terms of changes in the concentration of $\mathrm{NO}, \mathrm{O}_{2}$ and NO_{2}.
(b) At a particular instant, when $\left[O_{2}\right]$ is decreasing at $0.2 \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$ at what rate is $\left[\mathrm{NO}_{2}\right]$ increasing at that instant ?

- View Text Solution

3. What is the order with respect to each of the reactant and overall order of the following reactions?
(a) $5 \mathrm{Br}_{(a q)}^{-}+\mathrm{BrO}_{3(a q)}^{-}+6 \mathrm{H}_{(a q)}^{+} \rightarrow 3 \mathrm{Br}_{2_{(l)}}+3 \mathrm{H}_{2} \mathrm{O}_{(I)}$

The experimental rate law is
Rate $=k\left[\mathrm{Br}^{-}\right]\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
(b) $\mathrm{CH}_{3} \mathrm{CHO}_{(g)} \xrightarrow{\Delta} \mathrm{CH}_{4(g)}+\mathrm{CO}_{(g)}$
the experimental rate law is
Rate $=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}$
4. The rate of the reaction $x+2 y \rightarrow$ product is $4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$, if $[\mathrm{x}]=[\mathrm{y}]=0.2 \mathrm{M}$ and rate constant at 400 K is $2 \times 10^{-2} s^{-1}$, what is the overall order of the reaction.

- View Text Solution

5. (i) A first order reaction takes 8 hours for 90% completion. Calculate the time required for 80% completion.$(\log 5=0.6989, \log 10=1)$

- View Text Solution

6. The half life of a first order reaction $x \rightarrow$ products is $6.932 \times 10^{4} s$ at 500 K . What percentage of x would be decomposed on heating at 500 K for $100 \mathrm{~min} .\left(e^{0.06}=1.06\right)$

- View Text Solution

7. Show that is case of first order reaction, the time required for 99.9% completion is nearly ten times the time required for half completion of the reaction.

- View Text Solution

8. The rate constant of a reaction at 400 and 200 K are 0.04 and $0.02 s^{-1}$ respectively. Calculate the value of activation energy .

- View Text Solution

9. Rate constant k of a reaction varies with temperature T according to the following Arrhenius equation.
$\log k \log A \frac{E_{a}}{2.303 R}\left(\frac{1}{T}\right)$ where E_{a} is the activation energy. When a graph is plotted is or logk Vs $\frac{1}{T}$ a straight line with a slope of -400 K is obtained. Calculate the activation energy .
10. Write the rate expression for the following reactions, assuming them as elementary reaction. (i) $3 A+5 B_{2} \rightarrow 4 C D$ (ii) $X_{2}+Y_{2} \rightarrow 2 X Y$

- View Text Solution

2. Consider the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ to form $\mathrm{NO}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$. At a particular instant $N_{2} O_{5}$ disappears at a rate of $2.5 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} s^{-1}$. At what rates are NO_{2} and O_{2} formed ? What is the rate of the reaction?

- View Text Solution

3. For a reaction, $X+Y \rightarrow$ Product, quadrupling [x]. Increases the rate by a factor of 8 . Quadrupling both $[x]$ and $[y]$, increases the rate by a factor of 16. Find the order of the reaction with respect to x and y. What is the overall order of the reaction.
4. Find the individual and overall order of the following reaction using the given data .
$\left.2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NOCl9g}\right)$

- View Text Solution

5. In a first order reaction $A \rightarrow$ products, 60% of the given sample of A decomposes in 40 min . What is the halg life of the reaction .

- View Text Solution

6. The rate constant for a first order reaction is $2.3 \times 10^{-4} s^{-1}$. If the initial concentration of the reactant is 0.01M. What concentration will remain after 1 hour?
7. Hydrolysis of an ester in an aqueous solution was studied by titrating the liberated carboxylic acid against sodium hydroxide solution. The concentration of the ester at different time intervals are given below .

Time (min)	0	30	60	90
Ester concentration	molL^{-1}	0.85	0.80	0.754
0.71				

Show that , the reaction follows first order kinetics.

- View Text Solution

8. For a first order reaction the rate constant at 500 K is $8 \times 10^{-4} s^{-1}$.

Calculate the frequency factor, if the energy of activation for the reaction is $190 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- View Text Solution

1. For a first order reaction $A \rightarrow B$ the rate constant is $x \min ^{-1}$. If the initial concentration of A is 0.01 M , the concentration of A after one hour is given by the expression.
A. $0.01 e^{-x}$
B. $1 \times 10^{-2}\left(1-e^{-60 x}\right)$
C. $\left(1 \times 10^{-2}\right) e^{-60 x}$
D. none of these

Answer: C

- View Text Solution

2. A zeo order reaction $X \rightarrow$ Product, with an initial concentration 0.02
M has a half life of 10 min . If one starts with concentration 0.04 M , then the half life is
A. 10 s
B. 5 min
C. 20 min
D. cannot be predicted using the given information

Answer: C

- View Text Solution

3. Among the following graphs showing variation of rate constant with temperature (T) for a reaction, the one that exhibits Arrhenius behavior over the entire temperature range is \qquad
A.

B. .
C.
D. both (b) and (c)

Answer: B

4. For a first order reaction $A \rightarrow$ product with initial concentration $x m o l L^{,-1} \mathrm{~m}$ has a half life period of 2.5 hours. For the same reaction with initial concentration. $\left(\frac{x}{2}\right) \mathrm{mol} \mathrm{L}^{-1}$ the half life is
A. (2.5×2) hours
B. $\left(\frac{2.5}{2}\right)$ hours
C. 2.5 hours
D. Without knowing the rate constant , $t_{1 / 2}$ cannot be determined from the given data

Answer: D

- View Text Solution

5. For the reaction, $2 \mathrm{NH}_{3} \rightarrow N_{2}+3 H_{2}$, if
$\frac{-d\left[\mathrm{NH}_{3}\right]}{d t}=k_{1}\left[N H_{3}\right], \frac{d\left[N_{2}\right]}{d t}=k_{2}\left[N H_{3}\right], \frac{d\left[H_{2}\right]}{d t}=k_{3}\left[N H_{3}\right]$ then the
relation between k_{1}, k_{2} and k_{3} is
A. $k_{1}=k_{2}=k_{3}$
B. $k_{1}=3 k_{2}=2 k_{3}$
C. $1.5 k_{1}=3 k_{2}=k_{3}$
D. $2 k_{1}=k_{2}=3 k_{3}$

Answer: C

- View Text Solution

6. The decomposition of phosphine $\left(\mathrm{PH}_{3}\right)$ on tungsten at low pressure is a first order reaction. It is because the \qquad [SET]
A. rate is proportional to the surface converge
B. rate is inversely proportional to the surface converge
C. rate of decomposition is slow
D. rate is independent of the surface

Answer: C

D View Text Solution

7. For a reaction Rate $k=$ [acetone $^{3 / 2}$ then unit of rate constant and rate of reaction respectively is \qquad
A. $\left(m o l L^{-1} s^{-1}\right),\left(\operatorname{mol}^{-1 / 2} L^{1 / 2} s^{-1}\right)$
B. $\left(m o l^{-1 / 2} L^{1 / 2} s^{-1}\right),\left(m o l L^{-1} s^{-1}\right)$
C. $\left(m o l L s^{-1}\right),\left(m o l^{1 / 2} L^{1 / 2} s\right)$
D. $\left(\operatorname{mol}^{-1 / 2} s^{-1}\right),\left(m o l L^{-1} s^{-1}\right)$

Answer: B

D View Text Solution

8. The addition of a catalyst during a chemical reaction alters which of the following quantities ?
A. Enthalpy
B. Activation energy
C. Entropy
D. Internal energy

Answer: B

- View Text Solution

9. Consider the following statements :
(i)increase in concentration of the reactant increases the rate of a zero order reaction.
(ii) rate constant k is equal to collision frequency A if $E_{a}=0$
(iii) rate constant k is equal to collision frequency A if $E_{a}=\circ$ (iv) a plot of $\ln (k)$ vs $\left(\frac{1}{T}\right)$ is a straight line with a positive slope.

Correct statements are
A. (ii) only
B. (ii) and (iv)
C. (ii) and (v)
D. (i), (ii) and (v)

Answer: A

- View Text Solution

10. In a reversible reaction, the enthalpy change and the activation energy in the forward direction are respectively $-x \mathrm{kJmol}^{\text {and }} \mathrm{ykJmol}^{-1}$. Therefore, the energy of activation in the backward direction is
A. $(y-x) \mathrm{kJ} \mathrm{mol}^{-1}$
B. $(x+y) \mathrm{Jmol}^{-1}$
C. $(x-y) \mathrm{kJmol}^{-1}$
D. $(x+y) \times 10^{3} \mathrm{Jmol}^{-1}$

Answer: D

11. What is the activation energy for a reaction if its rate doubles when the temperature is raised from 200 K to 400 K ?

$$
\left(R=8.314 \mathrm{kJmol}{ }^{-1} K^{-1}\right)
$$

A. $234.65 \mathrm{~kJ} \mathrm{~mol}^{-1} K^{-1}$
B. $434.65 \mathrm{~kJ} \mathrm{~mol}^{-1} K^{-1}$
C. $434.65 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
D. $334.65 \mathrm{~kJ} \mathrm{~mol}^{-1} K^{-1}$

Answer: C

- View Text Solution

12. , This reaction follows first order kinetic. This rate constant at particular temperature is 2.303×10^{-2} hour $^{-1}$. The initial concentration of cyclopropane is 0.25 M . What will be the concentration of

cyclopropane after 1806 minutes ?

$(\log 2=0.3010)$
A. 0.125 M
B. 0.215 M
C. $0.25 \times 2.303 M$
D. 0.05 M

Answer: B

D View Text Solution

13. For a first order reaction, the rate constant is $6.909 \mathrm{~min}^{-1}$. The time taken for 75% conversion in minutes is
A. $\left(\frac{3}{2}\right) \log 2$
B. $\left(\frac{2}{3}\right) \log 2$
C. $\left(\frac{3}{2}\right) \log \left(\frac{3}{4}\right)$
D. $\left(\frac{2}{3}\right) \log \left(\frac{4}{3}\right)$

Answer: B

- View Text Solution

14. In a first order reaction $x \rightarrow y$, if k is the rate constant and the initial concentration of the reactant x is 0.1 M , then , the half life is \qquad
A. $\left(\frac{\log 2}{k}\right)$
B. $\left(\frac{0.693}{(0.1) k}\right.$
C. $\left(\frac{\ln 2}{k}\right)$
D. none of these

Answer: C

- View Text Solution

15. Predict the rate law of the following reaction based on the date given below $2 A+B \rightarrow C+3 D$
A. rate $=[A]^{2}[B]$
B. rate $=[A][B]^{2}$
C. rate $=[A][B]$
D. rate $=[A]^{1 / 2}[B]^{3 / 2}$

Answer: B

- View Text Solution

16. Assertion : rate of reaction doubles when the concentration of the reactant is doubles if it is a first order reaction.
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false .
D. Both assertion and reason are false .

Answer: C

- View Text Solution

17. The rate constant of a reaction is $5.8 \times 10^{-2} s^{-1}$. The order of the reaction is \qquad
A. First order
B. zero order
C. second order
D. Third order
18. For the reaction $\mathrm{N}_{2} \mathrm{O}_{5(g)} \rightarrow 2 \mathrm{NO}_{2 g}+\frac{1}{2} \mathrm{O}_{2(g)}$, the value of rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given as $\left.6.5 \times 10^{-2}\right) \mathrm{molL}^{-1} \mathrm{~s}^{-1}$. The rate of formation of NO_{2} and O_{2} is given respectively as
A. $\left(3.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}\right)$ and $\left(1.3 \times 10^{-2} \mathrm{molL}^{-1} \mathrm{~s}^{-1}\right)$
B. $\left(1.3 \times 10^{-2} \mathrm{molL}^{-1} s^{-1}\right.$ and $\left(3.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}\right)$
C. $\left(1.3 \times 10^{-1} \mathrm{molL}^{-1} s^{-1}\right.$ and $\left(3.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}\right)$
D. none of these

Answer: C

- View Text Solution

19. During the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ to given dioxygen, $48 \mathrm{~g} \mathrm{O}_{2}$ is formed per minute at certain point of time. The rate of formation of water at this point is
A. $0.76 \mathrm{~mol} \mathrm{~min}^{-1}$
B. $1.5 \mathrm{~mol} \mathrm{~min}^{-1}$
C. $2.25 \mathrm{~mol} \mathrm{~min}^{-1}$
D. $3.0 \mathrm{~mol} \mathrm{~min}^{-1}$

Answer: D

- View Text Solution

20. If the initial concentration of the reactant is doubled, the time for half reaction is also doubled. Then the order of reaction is
A. zero
B. one
C. Fraction
D. none
21. In a homogeneous reaction $A \rightarrow B+C+D$, the initial pressure was P_{0} and after time t is was P. Expression of rate constant in terms of P_{0}, P and t will be
A. $k=\left(\frac{2.303}{t}\right) \log \left(\frac{2 P_{0}}{3 P_{0}-P}\right)$
B. $k=\left(\frac{2.303}{t}\right) \log \left(\frac{2 P_{0}}{P_{0}-P}\right)$
c. $k=\left(\frac{2.303}{t}\right) \log \left(\frac{2 P_{0}}{3 P_{0}-2 P}\right)$
D. $k=\left(\frac{2.303}{t}\right) \log \left(\frac{2 P_{0}}{3 P_{0}-P}\right)$

Answer: A

- View Text Solution

22. If 7% of a first order reaction was completed in 60% of the same reaction under the same conditions would be completed in
A. 20 minutes
B. 30 minutes
C. 35 minutes
D. 75 minutes

Answer: B

- View Text Solution

23. The half life period of a radioactive element is 140 days. After 560 days, 1 g of element will be reduced to
A. $\left(\frac{1}{2}\right) g$
B. $\left(\frac{1}{4}\right) g$
C. $\left(\frac{1}{8}\right) g$
D. $\left(\frac{1}{16}\right) g$

Answer: D

24. The correct difference between first and second order reactions is that \qquad
A. A first order reaction can be cataylsed, a second order reaction cannot b cataysed .
B. The half life of a first order reaction does not depend on $\left[A_{0}\right]$, the half life of a second order reaction odes depend on $\left[A_{0}\right]$.
C. The rate of a first order reaction does not depend on reactant concentrations, the rate of a second order reaction does depend on reactant concentrations.
D. The rate of a first reaction does depend on reactant concentration , the rate of a second order reaction does not depend on reactant concentrations.

Answer: B

View Text Solution

25. After 2 hours, a radioactive substance becomes $\left(\frac{1}{16}\right)^{\text {th }}$ of original amount. Then the half life (in min) is \qquad
A. 60 minutes
B. 120 minutes
C. 30 minutes
D. 15 minutes

Answer: C

- View Text Solution

Textbook Evaluation Ii Answer The Following Questions

1. Define average rate and instantaneous rate.
2. Defined rate law and constant.

- View Text Solution

3. Derive integrated rate law for a zero order reaction $A \rightarrow$ Product .

- View Text Solution

4. Define half life of reaction. Shows that the first order reaction half life is independent of Intel concentration.

- View Text Solution

5. What is an elementary reaction ? Given the differences between order and molecularity of a reaction.
6. Explain the rate determining step with an example .

- View Text Solution

7. Describe the graphical representation of first order reaction.

- View Text Solution

8. Write the law for the following reactions .
(a) A reaction that is $3 / 2$ order in x and zero order in y .
(b) A reaction that is second order in NO and first order in Br_{2}.

- View Text Solution

9. Explain the effect of catalyst on reaction rate with an example.
10. The rate law for a reaction of A, B and C has been found to be rate $=$ $k[A]^{2}[B][L]^{3 / 2}$

How would the rate of reaction Change when
(i) Concentration of [L] is quadrupled
(ii) Concentration of both $[\mathrm{A}]$ and $[\mathrm{B}]$ are doubled
(iii) Concentration of [A] is halved
(iv) Concentration of $[\mathrm{A}]$ is reduced to $(1 / 3)$ and consideration of $[\mathrm{L}]$ is quadrupled.

- View Text Solution

11. The rate of formation of a dimer in a second order reaction $7.5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at $0.05 \mathrm{~mol} \mathrm{~L}{ }^{--1}$ monomer concentration.

Calculate the rate constant.

- View Text Solution

12. For reaction $x+y+z \rightarrow$ products the rate law is given by rate $=k[x]^{3 / 2}[y]^{1 / 2}$ what is the overall order of the reaction and what is the order of reaction with respect to Z.

- View Text Solution

13. Explain briefly the collision theory of bimolecular reactions.

- View Text Solution

14. Write Arrhenius equation and explains the terms involved.

- View Text Solution

15. The decomposition of $\mathrm{Cl}_{2} \mathrm{O}_{7}$ at 500 K in the gas phase to Cl_{2} and O_{2} is a first order reaction. After 1 minutes at 500 K , the pressure of $\mathrm{Cl}_{2} \mathrm{O}_{7}$ falls from 0.08 to 0.04 atm . Calculate the reate constant in s^{-1}.
16. Given the example for a zero order reaction.

- View Text Solution

17. Explain pseudo first order reaction with an example.

- View Text Solution

18. Identify the order for the following reactions
(i) Rusting of Iron
(ii) Radioactive disintegration of $.92 U^{238}$.
(iii) $2 A+B \rightarrow$ products, rate $=k[A]^{1 / 2}[B]^{2}$

- View Text Solution

19. A gas phase reaction has energy of activation $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the frequency factor of the reaction is $1.6 \times 10^{13} \mathrm{~s}^{-1}$. Calculate the rate constant at $600 \mathrm{~K} .\left(e^{-40.09}=3.8 \times 10^{-18}\right)$.

- View Text Solution

20. For the reaction $2 x+y \rightarrow L$ find the rate law from the following data.

$[x](\min)$	$[y](\min)$	Rate $\left(M s^{-1}\right)$
0.2	0.02	0.15
0.4	0.02	0.30
0.4	0.08	1.20

- View Text Solution

21. How do concentration of the influence the rate of reaction?

- View Text Solution

22. How do nature of the reactant influence rate of reaction? Nature and state of the reactant:

- View Text Solution

23. The rate constant for first order reaction is $1.54 \times 10^{-3} s^{-1}$. Calculate its half life time .

- View Text Solution

24. The half life of the homogeneous gaseous reaction $\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$ which obeys first order kinetics is 8.0 minutes. How long will it take for the concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to the reduced to 1% of the initial value ?

- View Text Solution

25. The time for half change in a first order decomposition of a substance A is 60 seconds. Calculate the rate constant. How much of A will be left after 180 seconds?

- View Text Solution

26. A zero order reaction is 20% complete in 20 minutes. Calculate the value of the rate constant. In what time will the reaction be 80% complete?

- View Text Solution

27. The activation energy of a reaction is $225 \mathrm{k} \mathrm{calmol}^{-1}$ and the value of rate constant at $40^{\circ} \mathrm{C}$ is $1.8 \times 10^{-5} \mathrm{~s}^{-1}$. Calculate the frequency factor ,a,.

- View Text Solution

28. Benzene diazonium chloride in aqueous solution decomposes according to the equation $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}$. Starting with an initial concentration of $10 \mathrm{~g} \mathrm{~L}^{-1}$, the volume of N_{2} gas obtained at $50^{\circ} \mathrm{C}$ at different intervals of time was found to be as under:

$t(\min):$	6	12	18	24	30	∞
Vol. of	$N_{2}(m l):$	19.3	32.6	41.3	46.5	50.4

Show that the above reaction follows the first order kinetics. What is the value of the rate constant ?

- View Text Solution

29. From the following data, show that the decomposition of hydrogen peroxide is a reaction of the first order :

$$
\begin{array}{llll}
t(\min) & 0 & 10 & 20 \\
V(m l) & 46.1 & 29.8 & 19.3
\end{array}
$$

where t is the time in minutes and V is the volume of standard KMnO_{4}
solution required for titrating the same volume of the reaction mixture.
30. A first order reaction is 40% complete in 50 minutes. Calculate the value of the rate constant. In wha time the reaction be 80% complete?

- View Text Solution

Additional Questions I Choose The Correct Answer

1. Which onr of thr following is a slow reaction ?
A. Rusing of iron
B. Combustion of carbon
C. Reaction between BaCl_{2} and dil $\mathrm{H}_{2} \mathrm{SO}_{4}$.
D. Reaction between acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ with NaCl .

Answer: A

- View Text Solution

2. Which one of the following is the unit of rate of reaction ?
A. s^{-1}
B. $\mathrm{mol} s^{-1}$
C. $\mathrm{mol} L^{-1} s^{-1}$
D. $m o^{-1} l L^{-1} s^{-1}$

Answer: C

- View Text Solution

3. For a gas phase reaction , the unit of reaction rat is
A. s^{-1}
B. $\operatorname{atm} s^{-1}$
C. $m o l L^{-1} s^{-1}$
D. $\mathrm{mol}^{-1} L^{-1} s^{-1}$

Answer: B

- View Text Solution

4. For the reaction $A \rightarrow 2 B$, the rate of the reaction rate is \qquad
A. $+\frac{d[B]}{d t}=2-\frac{d[A]}{d t}$
B. $+\frac{d[A]}{d t}=\frac{1}{2} \frac{d[B]}{d t}$
C. Rate $=\frac{1}{2}-\frac{d[A]}{d t}$
D. Rate $=2 \frac{d[B]}{d t}$

Answer: A

D View Text Solution

5. Consider the following statement .
(i) In ionisation of cyclopropane, if the concentration of cyclopropane is reduced is reduced half, the rate increases twice.
(ii) The rate of the reaction depends upon the concentration of the reactant.
(iii) Order values must be determined experimentally .

Which of the above statement (s) is / are not correct ?
A. (i) only
B. (ii) and (iii)
C. (iii) only
D. (ii) only

Answer: A

- View Text Solution

6. In the reaction $2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$, the order of the reaction with respect to NO is \qquad
A. First order
B. second order
C. third order
D. zero order

Answer: B

- View Text Solution

7. In the reaction $2 N O_{(g)}+O_{2(g)} \rightarrow 2 N O_{2(g)}$, the order of the reaction with respect to O_{2} is \qquad
A. zero order
B. first order
C. second order
D. Third order

Answer: B

- View Text Solution

8. The overall order of the reaction $2 \mathrm{NO}_{(g)}+O_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$ is
A. 2
B. 1
C. 3
D. 0

Answer: C

- View Text Solution

9. Consider the following statements .
(i) Rate of the reaction does not depend on the initial concentration of the reactants.
(ii) Rate constant of the reaction depends on the initial concentration of reactants.
(iii) Rate constant of the reaction is equal to the rate of the reaction,
when the concentration of each of the reactants is unity.

Which of the above statement (s) is/are not correct ?
A. (i) only
B. (ii) only
C. (i) and (ii)
D. (iii) only

Answer: D

- View Text Solution

10. The overall molecularity of the reaction
$2 \mathrm{H}_{2} \mathrm{O}_{2(a q)} \xrightarrow{I^{-}} 2 \mathrm{H}_{2} \mathrm{Ol}_{(l)}+\mathrm{O}_{2(\mathrm{~g})}$ is \qquad
A. unimolecular
B. bimolecular
C. termolceular
D. pentamolecular

Answer: B

- View Text Solution

11. Which of the following is the order decompostion of hydrogen peroxide catalysed by I^{-}?
A. First order
B. second order
C. Zero order
D. Third order

Answer: A

12. Consider the following statements .
(i) order cannot be zero .
(ii) Molecularity can be zero (or) fractional (or) integer.
(iii) order can be determined only by experiment.

Which of the above statement (s) is/are not correct?
A. (i) only
B. (ii) only
C. (iii) only
D. (i) and (ii)

Answer: C

- View Text Solution

13. The overall order of the reaction $5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+}$is
A. 4
B. $3 / 2$
C. 12
D. 1

Answer: A

- View Text Solution

14. Which one of the following reaction is a fractional order reaction ?
A. $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CHO}_{(g)} \rightarrow \mathrm{CH}_{4_{(g)}+\mathrm{CO}(g)}$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2(a q)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2_{g}}$
D. $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$

Answer: B

15. The order of decomposition of acetaldehyde is
is
A. 1
B. 1.5
C. 2
D. $5 / 2$

Answer: B

- View Text Solution

16. Which one of the following is the unit rate constant for a first order reaction ?
A. $\mathrm{mol}^{-1} s^{-1}$
B. $\mathrm{mol}^{-1} L s^{-1}$
C. s^{-1}
D. mol LS

Answer: C

D View Text Solution

17. Which one of the following is an example for first order reaction?
A. $2 \mathrm{NO}_{(g)}+\mathrm{O}_{(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$
B. $\mathrm{CH}_{3} \mathrm{CHO}_{(g)} \rightarrow \mathrm{CH}_{4(g)}+\mathrm{CO}_{(g)}$
C. $\mathrm{SO}_{2} \mathrm{Cl}_{2(l)} \rightarrow \mathrm{SO}_{2(g)}+\mathrm{Cl}_{2(g)}$
D. $2 \mathrm{HBr} \rightarrow \mathrm{H}_{2}+\mathrm{Br}_{2}$

Answer: C

- View Text Solution

18. Which one of the following is not an example for first order reaction ?
A. $N_{2} O_{5(g)} \rightarrow 2 \mathrm{NO}_{2_{(g)}} \frac{1}{2} O_{2(g)}$
B. $\mathrm{SO}_{2} \mathrm{Cl}_{2(l)} \rightarrow \mathrm{SO}_{2(g)}+C l_{2(g)}$
C. $\mathrm{H}_{2} \mathrm{O}_{2(a q)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)} \frac{1}{2} \mathrm{O}_{2(g)}$
D. $\mathrm{CH}_{3} \mathrm{CHO}_{(g)} \rightarrow \mathrm{CH}_{4 g}+\mathrm{CO}_{(g)}$

Answer: D

- View Text Solution

19. What is the order of isomerisation of cyclopropane to propene ?
A. 1.5
B. $3 / 2$
C. $5 / 2$
D. 1

Answer: D

20. Which is the order of isomerisation of cycloprapane ot propene ?
A. $\mathrm{CH}_{3} \mathrm{CHO}_{(g)} \rightarrow \mathrm{CH}_{4(g)}+\mathrm{CO}_{(g)}$
B. $2 \mathrm{H}_{2} \mathrm{O}_{2_{(a q)}} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(g)}$
C.
$\mathrm{CH}_{3} \mathrm{COOHCH}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{CH}_{3} \mathrm{OH}_{(a q)}$
D. Isomerisation of cyclo propane to propene

Answer: C

- View Text Solution

21. Which one of the following is called pseudo firs order reaction ?
A. Decomposition of acetaldehyde
B. Acid hydrolysis of an ester
C. Isomerisation of cycloprapane to propne
D. Decomposition of hydrogen peroxide

Answer: B

- View Text Solution

22. Which of the following is an example of zero order reaction ?
A. Iodination of acetone in acid medium
B. Hydrolysis of an ester in acid medium
C. Decomposition of acetaldehyde
D. Isomerisation of cyclo propane to propene

Answer: A

- View Text Solution

23. Which one of the follow is not zero order reaction ?
A. $\mathrm{H}_{2(g)}+\mathrm{Cl}_{2(g)} \xrightarrow{h v} 2 \mathrm{HCl}_{(g)}$
B. $\mathrm{N}_{2} \mathrm{O}(g) \Leftrightarrow N_{2(g)}+\frac{1}{2} O_{2(g)}$
C. $\mathrm{CH}_{3} \mathrm{COHO}_{(g)} \rightarrow \mathrm{CH}_{4(g)}+\mathrm{CO}((g))$
D. $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{I}_{2} \xrightarrow{\mathrm{H}^{+}} \mathrm{ICH}_{2} \mathrm{COCH}_{3}+\mathrm{HI}$

Answer: C

- View Text Solution

24. Consider the following statements.
(i) For a first order reaction, half life period is independent of initial of concentration.
(ii) Photo chemical reaction between H_{2} and Cl_{2} is azero order reaction.
(iii) Acid hydrolysis of an ester is a second order reaction Which of the above statement is/ are correct ?
A. (i) only
B. (iii) only
C. (i) \& (ii)
D. (ii) \& (iii)

Answer: C

- View Text Solution

25. The formula of half life for an $n^{t h}$ order reaction involving A and $n \neq 1$ is \qquad
A. $t_{1 / 2}=\frac{2^{n-1}-1}{(n-1) k\left(A_{0}\right)^{n-1}}$
B. $t_{1 / 2}=\frac{k_{1}}{0.693}$
C. $t_{1 / 2}=\frac{2^{n}}{(n-1) k(A)^{n+1}}$
D. $t_{1 / 2}=\frac{2^{n-1}-1}{(n-1) k\left(A_{g}\right)^{n+1}}$

Answer: A

26. The half life period of first order reaction is 10 seconds. What is the time required for 99.9% completion of that reaction ?
A. 20 seconds
B. 1000 seconds
C. 100 seconds
D. 99 seconds

Answer: C

- View Text Solution

27. Which one of the following is known as arrhenius equation ?
A. $k=A e^{-\left(\frac{E_{a}}{R T}\right)}$
B. $k=A e^{\left(\frac{E_{a}}{R I}\right)}$
C. $k=A e^{-\left(\frac{R T}{E_{a}}\right)}$
D. $k=A e^{-\left(\frac{R T}{E_{a}}\right)}$

Answer: A

- View Text Solution

28. Which one of the following is known as arrhenisus equation ?
A. Nature of the reactant
B. Concentration of the reactants
C. Surface area and temperature
D. pressure

Answer: D

- View Text Solution

29. Consider the following statements.
(i) Higher the concentration, slower is the possibility for collision and rate also slower
(ii) Increase in surface are a of reactant leads to more collisions per second
(iii) Gas phase reactions are slower as compared to solid or liquid reactants

Which of the above statement is/ are not correct ?
A. (ii)
B. (i) \& (iii)
C. (ii) \& (iii)
D. (i) \& (ii)

Answer: B

- View Text Solution

30. Which of the following reaction take place at a faster rate
A. $2 \mathrm{Na} a_{(s)}+I_{2(s)} \rightarrow 2 \mathrm{NaI}_{(s)}$
B. $2 \mathrm{Na} a_{(s)}+I_{2(g)} \rightarrow 2 \mathrm{NaI} I_{(s)}$
C. $\mathrm{PbNO}_{3}(s)+K I_{(s)} \rightarrow \mathrm{PbI}_{(s)}+\mathrm{KNO}_{3}$
D. $\mathrm{CaCO}_{\text {Marble }}+\stackrel{\mathrm{dil}}{\mathrm{HCl}} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Answer: B

- View Text Solution

31. Which one of the following graph is not correct
A.
B.
C.
D.

Answer: D

32. The half life of paracetamol with in the body is
A. 2 hours
B. 2.5 hours
C. 6 hours
D. 10 hours

Answer: B

- View Text Solution

33. What is the order of radioactive decay?
A. first order
B. zero order
C. second order
D. Third order

D View Text Solution

34. $t_{1 / 2}$ of the reaction increases with increases in initial concentration of the reaction means the order of reaction will be
A. first order
B. zero order
C. second order
D. third order

Answer: B

D View Text Solution

35. The reaction rate the does not decrease with time is
A. pseudo first order reaction
B. first order reaction
C. zero order reaction
D. second order reaction

Answer: C

- View Text Solution

36. The rate of the reaction $X \rightarrow Y$ becomes 8 times when the concentration of the reactant ' X ' is doubled. The rate law of the reaction is \qquad
A. $-\frac{d[x]}{d t}=k[X]^{2}$
B. $-\frac{d[x]}{d t}=k[X]^{3}$
C. $-\frac{d[x]}{d t}=k[X]^{4}$
D. $-\frac{d[x]}{d t}=k[X]^{8}$

Answer: B

D View Text Solution

37. The decomposition of ammonia gas on platinum surface has a rate constant $k=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$. What is the order of the reaction ?
A. first order
B. second order
C. third order
D. zero order

Answer: D

38. A reaction is 50% completed in 2 hours and 75% completed in 4 hours. Then the order of the reaction is \qquad
A. first order
B. zero order
C. second order
D. third order

Answer: A

- View Text Solution

39. What is the rate equation for the reaction $A+B \rightarrow C$ has zero order?
A. Rate $=k$
B. Rate $=\mathrm{k}[\mathrm{A}]$
C. Rate $=k[A]$. [B]
D. Rate $k . \frac{1}{[c]}$

Answer: C

- View Text Solution

40. How does the value of rate constant vary with reactant concentration
A. $k \propto \frac{c^{n-1}}{n+1}$
B. $k \propto \frac{1}{c^{n-1}}$
C. $k \propto \frac{1}{c^{n+1}}$
D. $k \propto \frac{1}{C}$

Answer: B

- View Text Solution

41. Identify the reaction order if the unit of rate constant is s^{-1}.
A. zero order reaction
B. second order reaction
C. first order reaction
D. third order reaction

Answer: C

D View Text Solution

42. What is unit of zero order reaction?
A. s^{-1}
B. $\mathrm{mol}^{-1} L^{-1} s^{-1}$
C. $m o l L^{-1} s^{-1}$
D. $m o l L s^{-1}$

Answer: C

D View Text Solution

43. Which of the following factor affect th rate of the reaction
A. volume
B. pressure
C. conc
D. all the above

Answer: C

D View Text Solution

44. Acid hydrolysis of an ester is an example of
A. zero order reaction
B. Pseudo first order reaction
C. second order reaction
D. first order reaction

Answer: B

- View Text Solution

45. Polymerisation reactions follows \qquad order kinetics.
A. fractional
B. first
C. zero
D. Pseudo first

Answer: A

46. Activation energy of a chemical reaction can be determined by......
A. changing concentration of the reactants
B. Evaluating rate constants at standard temperature
C. Evaluating rate constants at two different temperature
D. Evaluating rate constants at two different temperature

Answer: C

- View Text Solution

47. Which of the following is the fastest reaction ?
A. $i u i u \frac{1}{2} 2 \xrightarrow{250^{\circ} C}$
B. $\ddot{u} \ddot{u} \frac{1}{2} 2 \xrightarrow{500^{\circ} C}$
C. $i u i u \frac{1}{2} 2 \xrightarrow{750^{\circ} \mathrm{C}}$
D. $\ddot{u} \ddot{u} \frac{1}{2} 2 \xrightarrow{1000^{\circ} C}$

Answer: D

- View Text Solution

48. Half life period of a reaction is found to be inversely proportional to the cube of its initial concentration. The order of the reaction is \qquad
A. 2
B. 5
C. 3
D. 4

Answer: D

- View Text Solution

49. A large increase in the rate of a reactant for a rise in temperature is due to
A. the decrease in the number of collisions
B. increases in the number of activated molecules
C. the shortening of mean free path
D. the lowering of activation energy

Answer: B

- View Text Solution

50. The minimum energy of a molecule would posses in order to enter into a fruitful collision is known as \qquad
A. Reaction energy
B. collision energy
C. Activation energy
D. Threshold energy

Additional Questions li Fill In The Blanks

1. The unit of the a reaction is \qquad

View Text Solution

2. For a........... reaction the unit of the reaction rate is atm s^{-1}

- View Text Solution

3. An elementary step is characterised by its
4. The total number of reactant spices involved in an elementary step is called is \qquad

- View Text Solution

5. The overall order of decomposition of acetaldehyde to methane and carbon monoxide rate law is called. \qquad

- View Text Solution

6. A second order reaction can be altered to a first order reaction by taking one of the reactant in large excess, it is called...

- View Text Solution

7. A reaction in which rate is independent of the the concentration of the reactant over a wide range of concentration is called
8. All radioactive disintegration reactions follow.......... kinetics.

- View Text Solution

9. For a first order reaction, half life does not depend on

- View Text Solution

10. Half life period of zero order reaction is \qquad proportional to initial concentration of the reactant.

- View Text Solution

11. Half life period reaction is directly proportional to initial concentration of the reactant.
12. was proposed by Max Trautz and wilinam lewis.

- View Text Solution

13. Collision theory was proposed by........in 1916 andin 1918.

- View Text Solution

14. For a gas at room temperature (289 K) and 1 atm, each molecules undergoes approximately Per second.

- View Text Solution

15. In order the react, the colliding molecules must process a minimum energy called
16. The number of collisions of reactant molecules per second is known as.

- View Text Solution

17. reactions are faster as compared to reaction involving solid or liquid reactants.

- View Text Solution

18. The rate of reaction .with the increase is the concentration of the reactants.
19. Higher the concentration of reactions greater is the possibility of .and hence the \qquad

View Text Solution

20. In the presence of catalyst the energy of activation is \qquad .and hence greater number of molecules change over to products there by increasing the rate of the reaction.

- View Text Solution

21. Bio availability of drugs within the body and this branch of study is called

- View Text Solution

22. \qquad has a half life 2.5 hours within the body.
23. Increase in surface are of reactant leads to more collisions per litre per second and hence the rate of the reaction

- View Text Solution

24. Acid hydrolysis of an ester is an example of

- View Text Solution

Additional Questions lii Match The Following

1. Match the list I and II using the code given below the list .

List -I

A. Acid hydrolysis of an ester
B. Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$
C. Decomposition of $\mathrm{CH}_{3} \mathrm{CHO}$
D. Substitution of methyl bromide with aqueous KOH

Code

List - II

1. Fractional orde
2. second order re
3. Pseudo first orc
4. First order reac
A. $\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}3 & 4 & 1 & 2\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}4 & 2 & 3 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}1 & 3 & 2 & 4\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 2 & 1 & 4 & 3\end{array}$

Answer: a

- View Text Solution

2. Match the list I and II using the code given below the list .

	List -I		List - II
A.	$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$	1.	First order
B.	$\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH}$	2.	Zero order
C.	${ }^{92 U u} \mathrm{U} u \mathrm{u} \rightarrow{ }_{90} \mathrm{Th}+_{2} \mathrm{He}$	3.	Pseudo firs
D. $\mathrm{CH}_{3} \mathrm{COCH}_{3}+I_{2} \rightarrow \mathrm{ICH}_{2} \mathrm{COCH}_{3}+\mathrm{HI}$	4.	Third orde	
code			

A. $\begin{array}{llll}A & B & C & D \\ 3 & 2 & 4 & 1\end{array}$
B. $\begin{array}{llll}A & B & C & D \\ 4 & 3 & 1 & 2\end{array}$
C. $\begin{array}{llll}A & B & C & D \\ 2 & 1 & 3 & 4\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 1 & 4 & 2 & 3\end{array}$

Answer: b

- View Text Solution

3. Match the list I and II using the code given below the list .

List -I
List - II
A. $\quad N_{2} O(g) \Leftrightarrow N_{2}(g)+1 / 2 O_{2}(g)$
B. $\quad \mathrm{SO}_{2} \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{cl}_{2}(\mathrm{~g})$
C. $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$

1. \quad Order $=$
D. $5 \mathrm{Br}_{(a q)}^{-}+\mathrm{BrO}_{3(a q)}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2(l)}+3 \mathrm{H}_{2} \mathrm{O}(l)$
2. $O r d e r=$
3. $O r d e r=$ code
$\begin{array}{llll}A & B & C & D \\ 3 & 1 & 4 & 2\end{array}$
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}4 & 2 & 3 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C. $\begin{array}{llll}2 & 4 & 1 & 3\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 1 & 3 & 2 & 4\end{array}$

Answer: a

4. Match the list I and II using the code given below the list .

List -I

A. $t_{1 / 2}$ of first order reaction
B. $t_{1 / 2}$ of $n^{t h}$ order
C. Fraction of effective collision
D. Rate constant of first order reaciton
4. $\frac{2^{n-1}-1}{(n-1) k\left(A_{0}\right)^{n-1}}$ code
$\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}3 & 4 & 1 & 2\end{array}$
B. $A \quad B \quad C \quad D$
$\begin{array}{llll}4 & 2 & 3 & 1\end{array}$
C. $\begin{array}{llll}A & B & C & D \\ 1 & 3 & 2 & 4\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 2 & 1 & 4 & 3\end{array}$

Answer: a

1. Assertion (A) : Decomposition of hydrogen first order reaction .

Reaction (R) : The above reaction take place in two steps, step I involved both $\mathrm{H}_{2} \mathrm{O}_{2}$ and I^{-}and so it is bimolecular but order is determined experimentally as 1 .
A. Both A and R are correct and R is the correct explanation of A
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

- View Text Solution

2. Assertion (A) : $5 \mathrm{Br}_{(a q)}^{-}+\mathrm{BrO}_{3_{(a q)}}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{BR}_{2(l)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)}$

The overall order of the reaction is equal to 4 .
Reason (R) : The experimental rate law is , Rate $=$
$K\left[\mathrm{Br}^{-}\right]\left[\mathrm{BRO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$.
So $1++1+2=4$ order value is 4 .
A. Both A and R are correct and R is the correct explanation of A
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

- View Text Solution

3. Assertion (A) : The rate of a reaction increases with the increase in the concentration of the reactants .

Reason (R) : The rate of the reaction depends upon the number of Collisions between the reacting molecules. Higher the concentration , greater is the possibility for collision and hence the rate .
A. Both A and R are correct and R is the correct explanation of A
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

D View Text Solution

4. Assertion (A): Powered calcium carbonate reacts much faster with dilute HCl then with the same mass of CaCO_{3} as marble.

Reason : For a given mass of a reactant, when the particle size decrease, surface area increases Increase in surface area of the reaction leads to more Collisions per litre per second and hence the rate of the reaction also increase
A. Both A and R are correct and R is the correct explanation of A
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

- View Text Solution

5. Assertion (A) : Catalyst presence increase the rate the reaction

Reason (R) : in the presence of a catalyst, energy of activation is lowered and hence greater number of molecules can across the energy barrier and change over to products thereby increasing the rate of the reaction.
A. Both A and R are correct and R is the correct explanation of A
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: b

6. Assertion (A) : Doctors adviced to take paracetamol once in 6 hours during fever and body pain

Reason (R) : Paracetamol has a half-life of 2.5 hours within the body. After 10 hours (4 half lives) only 6.25% of drug remains. Based on this , doctors adviced to take it once in 6 hours.
A. Both A and R are correct and R is the correct explanation of A
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

- View Text Solution

7. Assertion (A) : Order of the reaction can be zero or fractional

Reason (R) : We cannot determine order from balanced chemical equation
A. Both A and R are correct and R is the correct explanation of A
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

- View Text Solution

8. Assertion (A) : If the activation energy of a reaction is zero , temperature will have no effect on the rate constant Reason (R) : Lower the activation energy, faster is the reaction .
A. Both A and R are correct and R is the correct explanation of A
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

D View Text Solution

Additional Questions V Find The Odd One Out

1. Find the odd one out
A. $\mathrm{N}_{2} \mathrm{O}_{5(g)} \rightarrow 2 \mathrm{NO}_{2(g)}+1 / 2 \mathrm{O}_{2(g)}$
B. $S O_{2} \mathrm{Cl}_{2(g)} \rightarrow \mathrm{SO}_{2(g)}+C l_{2(g)}$
C. $\mathrm{CH}_{3} \mathrm{CHO}_{(g)} \xrightarrow{\Delta} \mathrm{CH}_{4(g)}+\mathrm{CO}_{(g)}$
D. $\mathrm{H}_{2} \mathrm{O}_{2((a q))} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+1 / 2 \mathrm{O}_{2_{(g)}}$

Answer: c

View Text Solution
2. Find the odd one out
A. $H_{2(g)}+C l_{2(g)} \xrightarrow{h v} 2 \mathrm{HCl}_{(g)}$
B. $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(g)}+1 / 2 \mathrm{O}_{2(g)}$
C. $N_{2} O_{(g)} \Leftrightarrow N_{2_{(g)}}+\frac{1}{2} O_{2(g)}$
D. $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{I}_{2} \xrightarrow{\mathrm{H}^{+}} \mathrm{ICH}_{2} \mathrm{COCH}_{3}+\mathrm{HI}$

Answer: b

- View Text Solution

3. Find the odd one out
A. Decomposition of dinitrogen pentoxide
B. Iodination of acetone in acid medium
C. Decomposition of $\mathrm{N}_{2} \mathrm{O}$ on hot Pt surface
D. photochemical reaction between H_{2} and Cl_{2}

Answer: a

Additional Questions 2 Mark Questions

1. Defined rate of the reaction give the unit of rate

- View Text Solution

2. Defined molecularity of a reaction.

- View Text Solution

3. Define order of chemical reaction.

- View Text Solution

4. Define half life period.
5. Mention the factors affecting the reaction rate .

- View Text Solution

6. How is surface area of the reactant affect the the rate of the reaction?

- View Text Solution

7. Paracetamol is prescribed to take once in 6 hours, justify this statement.

- View Text Solution

8. For a reactions , $A+B \rightarrow$ product, the rate law is given by $r=k[A]^{1 / 2}[B]^{2}$. What is the order of the reaction ?
9. The conversion of molecules X to Y follows second order kinetics . If concentration of X is increased to three times how will it affect the rate of formation of Y ?

- View Text Solution

10. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

- View Text Solution

11. What will be the effect of temperature on rate constant ?

- View Text Solution

12. A reaction is firt order in A and second order in B.

- View Text Solution

13. Define zero order reaction. Given the unit for its content (k).

- View Text Solution

14. Write units of rate constant k for zero order, first order, second order and $n^{\text {th }}$ order reaction.

- View Text Solution

15. What is the effect of catalyst on the activation energy ? Why ?

- View Text Solution

16. Give the differences between zero order and first order reaction .

- View Text Solution

Additional Questions 3 Mark Questions

1. Write the differences between the rate and rate constant of the reaction.

- View Text Solution

2. Whate are the examples of first order reaction?

- View Text Solution

3. For the reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate te average rate of reaction
using units of time both in minutes and seconds.

D View Text Solution

4. In a reaction, $2 A \rightarrow$ products, the concentration of A decreases from $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ to $0.4 \mathrm{~mol} \mathrm{~L}^{-1}$ in 10 minutes. Calculate the rate during this interval.

- View Text Solution

5. A first order reaction has a rate constant , $1.15 \times 10^{-3} s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g ?

- View Text Solution

6. Time required to decompose $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.
7. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is: (i) doubled (ii) reduced to half.

- View Text Solution

8. The rate constant for a first order reaction is $60 s^{-1}$. How much time will it take to reduce the initial concentration of the reactant to its $1 / 16^{\text {th }}$ value?

- View Text Solution

9. For a first reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.
10. Calculate the half life of a first order reaction whose rate constant is $200 s^{-1}$

View Text Solution

11. The decomposition of dinitrogen pontoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ follows the first order rate law. Calculare the rate constant from the given data :

- View Text Solution

12. A second order reaction in which both the reactants have same concentration, is 20% completed in 500 seconds. How much time it will take for 60% completion?

- View Text Solution

13. A first order reaction is 20% completed in 10 minutes. Calculate the time taken for the reaction to go to 80% completion.

- View Text Solution

14. For a reaction : $2 \mathrm{NH}_{3}(g) \xrightarrow{P t} N_{2}(g)+3 H_{2}(g)$ Rate $=\mathrm{K}$
(i) Write the order and molecularity of this reaction.

Write the unit of K .

- View Text Solution

Additional Questions 5 Mark Questions

1. How would you calculate the order of the reaction
$2 \mathrm{NO}_{(g)}+O_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$ by an experiment ? (or) prove that
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is a third order reaction.
2. Derive the integrated rate law for a first order reaction?

- View Text Solution

3. Explain the effect of temperature on reaction rate based on Arrhenius theory.

- View Text Solution

4. Explain about the factors that affecting the reaction rate. The rate of a reaction is affected by the following factors .

- View Text Solution

5. The decomposition of A into product has value of k as as $4.5 \times 10^{3} s^{-1}$ at $10^{\circ} \mathrm{C}$ and energy of activation $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$. At what temperature would k be $1.5 \times 10^{4} \mathrm{~s}^{-1}$?

- View Text Solution

6. For a decomposition reaction the value of rate constant k at two different temperature are given below : $k_{1}=2.15 \times 10^{-8} \mathrm{~L} \mathrm{~mol}^{-1} s^{-1}$ at $650 K \quad k_{2}=2.39 \times 10^{-7} \mathrm{l} \mathrm{mol}^{-1}$

Calculate the value of activation energy for this reaction. $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- View Text Solution

7. For a certain chemical reaction variation in concentration In [R] Vs time
(s) plot is given below :

For this reaction write /draw
(i) What is the order of the reaction?
(ii) What is the units of rate constant (k) ?
(iii) Give the relationship between k and $t_{1 / 2}$ (half - life period).
(iv) What does the slope of above line indicate ?
(v) Draw the plot of $\log \left[R_{0}\right] /[R]$ vs time (s)

- View Text Solution

8. A substance reacts according to the according to the first roder rate law and the specific reaction rate for the reaction is $1 \times 10^{-2} s^{-1}$. If the initial concentration is 1.0 M .
(a) What is the initial rate?
(b) What is the reaction rate after 1 minutes ?

- View Text Solution

9. A first order reaction in 50% completed in 30 minutes at $27^{\circ} \mathrm{C}$ and in 10 minutes at $47^{\circ} \mathrm{C}$. Calculate the reaction rate constant at $27^{\circ} \mathrm{C}$ and the energy of activation of eh reaction in $\mathrm{kJ} \mathrm{mol}^{-1}$

- View Text Solution

10. In Arrhenius equation for a a certain reaction, the values of A and E_{a} (activation energy) are $4 \times 10^{13} \mathrm{sec}^{-1}$ and $98.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. If the reaction is of order, at what temperature will its half life period be 10 minutes?

- View Text Solution

