びdoubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - FULL MARKS CHEMISTRY (TAMIL

ENGLISH)

SOLID STATE

Evaluate Yourself I

1. An element has a face centered cubic unit cell with a length of 352.4 pm along an edge. The density of the element is $8.9 \mathrm{gcm}-3$. How many atoms are present in 100 g of an element?
2. Determine the density of $C s C I$ which crystallizes in a bcc type structure with an edge length 412.1 pm .

D View Text Solution

3. A face centered cubic solid of an element (atomic mass 60) has a cube edge of $4 \AA$. Calculate its density.

D View Text Solution

Textbook Evaluation I Choose The Best Answer

1. Graphite and diamond are
A. Covalent and molecular crystals
B. ionic and covalent crystals
C. both covalent crystals
D. both molecular crystals

Answer: C

- View Text Solution

2. An ionic compound $A_{x} B_{y}$ crystallizes in fcc type crystal structure with B ions at the centre of each face and A ion occupying centre of the cubic, the correct formula $A_{x} B_{y}$ is
B. $A B_{3}$
C. $A_{3} B$
D. $A_{8} B_{6}$

Answer: B

D View Text Solution

3. The ratio of close packed atoms to tetahedral hole in cubic packing is
A. $1: 1$
B. $1: 2$
C. 2:1
D. $1: 4$

Answer: B

- View Text Solution

4. Solid CO_{2} is an example of \qquad
A. Covalent solid
B. metallic solid
C. molecular solid
D. ionic solid

Answer: C

5. Assertion : monoclinic sulphur is an example of monoclinic
crystal system
Reason : for a monoclinic system,
$a \neq b \neq c$ and $a=\gamma=90^{\circ}, \beta \neq 90^{\circ}$
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false.
D. Both assertion and reason are false

Answer: A

D View Text Solution
6. In calcium fluoride, having the flurite structure the coordination number of Ca^{2+} ion and F^{-}Ion are
A. 4 and 2
B. 6 and 6
C. 8 and 4
D. 4 and 9

Answer: C

- View Text Solution

7. The number of unit cells in 8 gm of an element X (atomic mass 40) which crystallizes in bcc pattern is (N_{A} is the Avogadro number)
A. 6.023×10^{23}
B. 6.023×10^{22}
C. 60.23×10^{23}
D. $\left(\frac{6.023 \times 10^{23}}{8 \times 40}\right)$

Answer: B

- View Text Solution

8. The number of carbon atoms per unit cell of diamond is
A. 8
B. 6
C. 1
D. 4

Answer: A

D View Text Solution

9. In a solid atom M occupies ccp lattice and $\left(\frac{1}{3}\right)$ of tetrahedral voids $=2 n$

Given that $\left(\frac{1}{3}\right)$ rd of tetrahedral voids are occupied i.e., $\left(\frac{1}{3}\right) \times 2 n$ are occupied by6 N atoms $\therefore M: N \Rightarrow n:\left(\frac{2}{3}\right)$
$1:\left(\frac{2}{3}\right) 3: 2 \Rightarrow M_{3} N_{2}$
A. $M N$
B. $M_{3} N$
C. $M N_{3}$
D. $M_{3} N_{2}$

Answer: D

- View Text Solution

10. The composition of a sample of wurtzite is $F e_{0.93} O_{1.00}$ what $\%$ of Iron present in the form of $F e^{3+}$?
A. 16.05%
B. 15.05%
C. 18.05%
D. 17.05%
11. The ionic radii of A^{+}and B^{-}are $0.98 \times 10^{-10} \mathrm{~m}$ and
$1.81 \times 10^{-10} \mathrm{~m}$, the coordination number of each ion in $A B$ is
A. 8
B. 2
C. 6
D. 4

Answer: C

- View Text Solution

12. $C s C l$ has bcc arrangement, its unit cell edge length is

400 pm , its inter atomic distance is \qquad
A. 400 pm
B. 800 pm
C. $\sqrt{3} \times 100 \mathrm{pm}$
D. $\left(\frac{\sqrt{3}}{2}\right) \times 400 \mathrm{pm}$

Answer: D

- View Text Solution

13. A solid compound XY has NaCl structure. If the radius of the cation is 100 pm , the radius of the anion will be.
A. $\left(\frac{100}{0.414}\right)$
B. $\left(\frac{0.732}{100}\right)$
C. 100×0.414
D. $\left(\frac{0.414}{100}\right)$

Answer: A

- View Text Solution

14. The vacant space in bcc lattice unit cell is
A. 48%
B. 23%
C. 32%
D. 26%

Answer: C

- View Text Solution

15. The radius of an atom is 300pm, if it crystallizes in a face centered cubic lattice, the length of the edge of the unit cell is \qquad
A. 488,5 on
B. 848,5 on
C. 884,5 on
D. 484.5 on

Answer: B
16. The fraction of total volume occupied by the atoms in a simple cubic is \qquad
A. $\left(\frac{\pi}{4 \sqrt{2}}\right)$
B. $\left(\frac{\pi}{6}\right)$
C. $\left(\frac{\pi}{6}\right)$
D. $\left(\frac{\pi}{3 \sqrt{2}}\right)$

Answer: B

- View Text Solution

17. The yellow colour in NaCl crystal is due to
A. excitation of electrons in F centers
B. reflectionof light from Cl^{-}ion on the surface
C. refraction of light from Na^{+}ion
D. all of the above

Answer: A

- View Text Solution

18. If 'a' stands for the edge length of the cubic system, sc, bcc, and fcc. Then the ratio of radii of spheres in these systems will be respectively.
A. $\left(\frac{1}{2} a: \frac{\sqrt{3}}{2} a: \frac{\sqrt{2}}{2} a\right)$
B. $(\sqrt{1} a: \sqrt{3} a: \sqrt{2} a)$
C. $\left(\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a\right)$
D. $\left(\frac{1}{2} a: \sqrt{3} a: \frac{1}{\sqrt{2}} a\right)$

Answer: C

D View Text Solution

19. If ' a ' is the length of the side of the cube, the distance between the body centered atom and one corner atom in the cube will be
A. $\left(\frac{2}{\sqrt{3}}\right) a$
B. $\left(\frac{4}{\sqrt{3}}\right) a$
C. $\left(\frac{\sqrt{3}}{4}\right) a$
D. $\left(\frac{\sqrt{3}}{2}\right) a$

Answer: D

- View Text Solution

20. Potassium has a bcc structure with nearest neighbor distance $4.52 \AA$. Its atomic weight is 39 . its density will be
A. $915 \mathrm{~kg} \mathrm{~m}^{-3}$
B. $2142 \mathrm{~kg} \mathrm{~m}^{-3}$
C. $452 \mathrm{~kg} \mathrm{~m}^{-3}$
D. $390 \mathrm{~kg} \mathrm{~m}^{-3}$

Answer: A
21. Schottky defect in a crystal is observed when
A. unequal number of anions and anions are missing from
the lattice
B. equal number of anions and anions are missing from the lattice
C. an ion leaves its normal site and occupies an interstitial site
D. no ion is missing from its lattice.

Answer: B
22. The cation leaves its normal position in the crystal and moves to some interstitial position, the defect in the crystal is known as
A. Schottky defect
B. F center
C. Frenkel defect
D. non-stoichiometric defect

Answer: C

- View Text Solution

23. Assertion : due to Frenkel defect, density of the crystalline solid decreases.

Reason : in Frenkel defect cation and anion leaves the crystal.
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true but reason is false.
D. Both assertion and reason are false

Answer: D

D View Text Solution

24. The crystal with a metal deficiency defect is
A. NaCl
B. $\mathrm{Fe} O$
C. ZnO
D. $K C I$

Answer: B

D View Text Solution

Textbook Evaluation li Answer The Following Questions

1. Define unit cell.

D View Text Solution
2. Give any three characteristics of ionic crystals.

D View Text Solution

3. Differentiate crystalline solids and amorphous solids.

- View Text Solution

4. Classify the following solids (a) P_{4}, (b) Brass (c) Diamond
(d) NaCl (e) lodine

- View Text Solution

5. Explain briefly seven types of unit cell.

Seven types of unit cell,
6. Distinguish between hexagonal close packing and cubic close packing.

D View Text Solution

7. Distinguish tetrahedral and octahedral voids.

- View Text Solution

8. What are point defects ?

- View Text Solution

9. Explain Schottky defect.

- View Text Solution

10. Write short note on metal excess and metal deficiency defect with an example.

D View Text Solution

11. Calculate the number of atoms in a fee unit cell.

- View Text Solution

12. Explain $A A A A$ and $A B A B A$ and $A B C A B C$ type of three dimensional packing with the help of neat diagram. Voids :

The empty spaces between the three dimensional layers are known as voids. There are two types of common voids
possible. They are tetrahedral and octahedral voids.

Tetrahedral void:

A void formed by three spheres of a layer in contact with each other and also with a sphere on the top or bottom layer
is a hole between four spheres. The spheres are arranged at
the vertices of a regular tetrahedron such a hole or void is
called tetrahedral void.

Octahedral void:

A hole or void formed by three spheres of a hexagonal layer and another three spheres of the adjacent layer is a hole between six spheres. The spheres are arranged at the vertices of a regular octahedron. Such a hole or void is called octahedral void.

- View Text Solution

13. Why ionic crystals are hard and brittle ?

D View Text Solution

14. Calculate the percentage efficiency of packing in case of body centered cubic crystal.

D View Text Solution

15. What is the two dimensional coordination number of a molecule in square close packed layer?
16. Experiment shows that Nickel oxide has the formula $N i_{0.96} O_{1.00}$. What friction of Nickel exists as of $N i^{2+}$ and $N i^{3+}$ ions ?

D View Text Solution

17. What is meant by the term "coordination number" ? What is the coordination number of atoms in a bcc structure?

D View Text Solution

18. An element has bcc structure with a cell edge of 208 pm .
the density of the element is $7.2 \mathrm{gcm}^{-3}$. How many atoms are present in 208g of the element.
19. Aluminium crystallizes in a cubic close packed structure. Its metallic radius is 125 pm . Calculate the edge length of unit cell.

- View Text Solution

20. If NaCl is doped with $10^{-2} \mathrm{~mol}$ percentage of strontium chloride, what is the concentration of cation vacancy?

D View Text Solution

21. KF crystallizes in fce structure like sodium chloride. calculate the distance between K^{+}and F^{-}in KF.
(given : density of KF is $2.48 \mathrm{~g} \mathrm{~cm}^{-3}$)

- View Text Solution

22. An atom crystallizes in fee erystal lattice and has a density of $10 \mathrm{gcm}^{-3}$ with unit cell edge length of 100 pm . calcutate the number of atoms present in 1 g of crystal.

D View Text Solution

23. Atoms X and Y form bee erystalline structure. Atom X is present at the corners of the cube and Y is at the centre of the cube. What is the formula of the compound ?

- View Text Solution

24. Sodium metal crystallizes in bee structure with the edge length of the unit cell $4.3 \times 10^{-} \mathrm{cm}$. Caleulate the radius of sodium atom.

D View Text Solution

25. Write a note on Frenkel defect.

D View Text Solution

Additional Questions I Choose The Best Answer

1. Consider the following statements

Solids have definite volume and shape
(ii) Solids are rigid and compressible
(iii) Solids have weak cohesive forces

Which of the above statemetns is/are not correct ?
A. (i) only
B. (ii) \& (iii) only
C. (iii) only
D. (i) \& (ii) only

Answer: B

- View Text Solution

2. Which one of the following is an ionic crystal ?
A. Glass
B. Rubber
C. NaCl
D. SiO_{2}

Answer: C

- View Text Solution

3. Which one of the following is an amor- phous solid ?
A. Glass
B. SiO_{2}
C. NaCl
D. Na
4. Which one of the following is an example for molecular crystals ?
A. Diamond
B. Silica
C. Glass
D. Naphthalene

Answer: D

- View Text Solution

5. Which one of the following is an example for atomic solids
?
A. Frozen elements of group 18
B. Group 17 elements
C. Inner - transition elements
D. chalcogens

Answer: A

- View Text Solution

6. Which one of the following is a covalent crystal ?
A. Glass
B. Diamond
C. Anthracene
D. Glucose

Answer: B

- View Text Solution

7. Consider the following statements.
(i) Crystalline solids have irregular shape
(ii) Generally crystalline solids are anisotropic in nature
(iii) Heat of fusion of crystalline solids are not definite at

Which of the above statements is /are correct ?
A. (i) \& (iii)
B. (i) only
C. (iii) only
D. (ii) only

Answer: D

- View Text Solution

8. Consider the following statements.
(i) Amorphous solids are isotropic like liquids
(ii) Amorphous solids are considered as pseudo solids
(iii) Amorphous solids have sharp melting points

Which of the above statemetns is/are correct ?
A. (i) only
B. (ii) only
C. (i) \& (ii)
D. (i) \& (iii)

Answer: C

D View Text Solution

9. In an ionic crystal, both cations and an- ions are bound together by.
A. Strong electrostatic attractive forces
B. Weak electrostatic attractive forces
C. Vanderwaals forces of attraction
D. Weak cohesive forces
10. Molecular solids contains neutral molecules held together
by \qquad
A. strong cohesive forces
B. weak vanderwaals forces
C. weak ionic forces
D. strong electrostatic forces

Answer: B

D View Text Solution

11. Which is used inside pencils and in many lubricants ?
A. Lead nitrate
B. charcoal
C. graphite
D. coke

Answer: C

- View Text Solution

12. In non polar molecular solids, molecules are held together by
A. London forces
B. weak vanderwaals forces
C. Strong electrostatic forces
D. strong cohesive forces

Answer: A

D View Text Solution

13. Which one of the following is non-polar molecular solids ?
A. Diamond
B. SiC
C. Anthracene
D. Glass

Answer: C

14. Silicon carbide is an example of
A. Ionic solid
B. Covalent solid
C. Polar molecular solid
D. Non - polar molecular solid

Answer: B

- View Text Solution

15. Naphthalene is an example of
A. ionic solid
B. covalent solid
C. non polar molecular solid
D. polar molecular solid

Answer: C

- View Text Solution

16. Solid NH_{3} solid CO_{2} are examples of
A. Covalent solids
B. polar molecular solids
C. molecular solids
D. ionic solids
17. Solids ice, glucose are examples of
A. metallic solids
B. ionic solids
C. hydrogen bonded molecular solids
D. non polar molecular solids

Answer: C

D View Text Solution

18. Consider the following statements.

conductivity

(ii) solid ice are soft solids under room temperature
(iii) In non polar molecular solids constituent molecules are held together by strong electrostatic forces of attraction Which of the above statenments is/are not correct ?
A. (i) \& (ii) only
B. (iii) only
C. (ii) only
D. (i) onlu

Answer: B

- View Text Solution

19. Each atom in the corner of the cubic unit cell is shared by how many unit cells ?
A. 8
B. 6
C. 1
D. 12

Answer: A

D View Text Solution

20. Which is the coordination number of each atom in a simple cubic unit cell ?
A. 8
B. 6
C. 12
D. 4

Answer: B

- View Text Solution

21. The number of atoms belongs to bcc unit cell is
A. 2
B. 4
C. 6
D. 12

Answer: A

D View Text Solution

22. The number of atoms in fcc unit cell is
A. 2
B. 4
C. 6
D. 8

Answer: B

23. The atoms the face centre is being shared by unit cells.
A. 4
B. 8
C. 2
D. 6

Answer: C

D View Text Solution

24. An atom present at the body centre belongs to only unit cell.
A. 1
B. 2
C. 4
D. 8

Answer: A

- View Text Solution

25. Which one of the following is known as Bragg's equation ?
A. $d=\frac{2 \sin \theta}{n \lambda}$
B. $d=\frac{n \lambda}{2 \sin \theta}$
C. $n \lambda=\frac{d}{\sin \theta}$
D. $d=\frac{2 \sin \theta}{n \lambda}$

Answer: D

D View Text Solution

26. Which one the following formula is used to calculate the density of the unit cell ?
A. $\rho=\frac{n M}{a^{3} N_{A}}$
B. $\rho=\frac{a^{3} N_{A}}{n M}$
C. $\rho=\frac{N_{A}}{a^{3} N M}$
D. $\rho=\frac{a^{3} N M}{n}$

Answer: A

- View Text Solution

27. Which is the packing fraction in simple cubic unit cell ?
A. 52.31%
B. 100 \%
C. 68%
D. 75%

Answer: A

- View Text Solution

28. The packing fraction in bcc arrangement is
A. 52.31%
B. 68%
C. 100%
D. 80%

Answer: B

D View Text Solution

29. Which is the coordination number in both hcp and ccp arrangements ?
A. 12
B. 6
C. 4
D. 8

- View Text Solution

30. What is the coordination number of $B_{2} 0_{3}$?
A. 4
B. 6
C. 8
D. 3

Answer: D

D View Text Solution
31. Which one of the following is the structure of $B_{2} 0_{3}$?
A. Tetra hedral
B. Octahedral
C. Trigonal planar
D. Cubic

Answer: C

D View Text Solution
32. The coordination number of zinc sulphide is
A. 3
B. 4
C. 6
D. 8

Answer: B

D View Text Solution

33. The coordination number of CsCl is
A. 3
B. 4
C. 6
D. 8

Answer: D

D View Text Solution

34. Which one of the following is the coordination number of

NaCl ?
A. 3
B. 4
C. 6
D. 8

Answer: C
35. Which one of the following is the packing efficiency in fcc unit cell ?
A. 74%
B. 52.61%
C. 100%
D. 68%

Answer: A

- View Text Solution

36. Which one of the following is an example for schottky defect?
A. NaCl
B. $A g B r$
C. $K C I$
D. $F e S$

Answer: A

- View Text Solution

37. Which one of the following is an example for Frenkel defect ?
A. $N a C l$
B. AgCl
C. $A g B r$
D. $\mathrm{AgNO} \mathrm{O}_{3}$

Answer: C

D View Text Solution
38. Metal excess defect is possible in
A. AgCl
B. $A g B r$
C. $K C I$
D. $F e S$

Answer: C

D View Text Solution
39. Which one of the following is the metal deficiency defect ?
A. $F e O$
B. ZnO
C. $K C I$
D. $N a C I$

Answer: A

- View Text Solution

40. Which one of the following shows non- stoichiometric defect?
A. $F e O$
B. AgBr
C. ZnO
D. Both a and c

Answer: A::B::C::D

- View Text Solution

Additional Questions li Fill In The Blanks

1. Naphthalene,Anthracene and glucose are examples of

D View Text Solution

2. The best examples of covalent crystals are and

D View Text Solution

3. Frozen elements of group 18 are called

- View Text Solution

4. Glass, Rubber, plastics are the examples of solids.

- View Text Solution

5. means uniformity in all directions.
6. Crystalline solids are and they show different values of physical properties when measured along different directions.

- View Text Solution

7. Diamond and silicon carbide are the examples of. solids.

- View Text Solution

8. In molecular solids, the neutral molecules are held together by weak

D View Text Solution

9. is a component of many lubricants for example cycle chain oil.

D View Text Solution

10. In non polar molecular solids constituent molecules held together are by

- View Text Solution

11. In solids CO_{2} solid NH_{3} the molecules are held together
by strong
12. Glucose and urea are generally under room temperature.

D View Text Solution

13. solids possess excellent electrical and thermal conductivity.

D View Text Solution

14. The regular arrangement of the ions throughout the crystal is called a
15. The basic repeating structural unit of a crystalline solid is called a

- View Text Solution

16. The number of the nearest neighbours that surrounding a particle in a crystal is called the

- View Text Solution

17. A unit cell that contains only one lattice point is called a
18. . is the most powerful tool for the determinaiton of crystal structure.

- View Text Solution

19. Only.................. of the available volume is occupied by the
spheres in simple cubic packing.

- View Text Solution

20. Of all the metals in the periodic table, only.
crystallizes in simple cubic pattern.
21. If the third layer arrangement is aba arrangement, it is called arrangement.

D View Text Solution

22. If third layer arrangement is abc arrangment, it is known as arrangement.

D View Text Solution

23. In both and arrangements, the coordination number of each sphere is 12 .
24. defect arises due to the missing of equal number of cations and anions from the crystal lattice.

- View Text Solution

25. Vanadium monoxide shows defect.

D View Text Solution

26. arises due to the dislocation of ions from its crystal lattice.

D View Text Solution
27. arises due to the presence of more number of metalions as compared to anions.

- View Text Solution

28. Zno is at room temperature but when it is heated it become In colour

- View Text Solution

29. arises due to the presence of less number of
cations than the anions.

- View Text Solution

30. is the appearance of an electrical potential across the sides of the crystal, when it is subjected to mechanical stress.

- View Text Solution

31. Stoichiometric defects in an ionic solid is also called
\qquad or defect.

- View Text Solution

Additional Questions lii Match The Following

1. Match the list I and II using the code given below the list List - I List - II
A. NaCl 1. Molecular crystal
B. SiO_{2} 2. Metallic crystal
C. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad 3$. Ionic crystal
D. Copper 4. Covalent crystal
A. $\begin{array}{llll}A & B & C & D \\ 3 & 4 & 1 & 2\end{array}$
B. $A \quad B \quad C \quad D$
B. $2 \quad 3 \quad 4 \quad 1$
C. $\begin{array}{llll}A & B & C & D \\ 4 & 1 & 2 & 3\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 1 & 2 & 3 & 4\end{array}$

Answer: (a) 3, 4, 1, 2

- View Text Solution

List - I
List - II

A. Atomic solid
1. Naphthalene

2. B. Molecular crystal $2 . \mathrm{KCl}$
C. Covalent crystal
D. Ionic crystal
$\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C.
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
D.
$\begin{array}{llll}2 & 4 & 1 & 3\end{array}$

Answer: (b) 3, 1, 4, 2

- View Text Solution

List - I
A. Covalent solid
3. B. Non polar molecular solid
C. Polar molecular solid
D. Hydrogen bonded molecular solids

List - II

1. Solid CO_{2}
2. SiC
3. Solid ice
4. Anthracene
A. $\begin{array}{llll}A & B & C & D \\ 2 & 4 & 1 & 3\end{array}$
$A \quad B \quad C \quad D$
B.
$\begin{array}{llll}4 & 3 & 2 & 1\end{array}$
$A \quad B \quad C \quad D$
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
D. $\begin{array}{llll}A & B & C & D \\ 1 & 2 & 3 & 4\end{array}$

Answer: (a) 2, 4, 1, 3

- View Text Solution

List - I
A. Schottky defect
4. B. Frenkel defect
C. Metal excess defect
D. Metal deficiency defect 4 . ZnO
$\begin{array}{llll}A & B & C & D\end{array}$
A.
$\begin{array}{llll}2 & 4 & 3 & 1\end{array}$
$A \quad B \quad C \quad D$
B.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
C. $\begin{array}{llll}A & B & C & D\end{array}$
$\begin{array}{llll}4 & 2 & 1 & 3\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
D.
$\begin{array}{llll}1 & 3 & 2 & 4\end{array}$

Answer: (b) 3, 1, 4, 2

- View Text Solution

5.

List - I
List - II
A. Bragg's equation 1. $\frac{n M}{a^{3} N_{A}}$
B. Density of unit cell 2. $\frac{\text { Total volume of all spheres in unit cell }}{\text { Volume of unit cell }} \times 100$
C. Packing efficiency 3. $\frac{r_{c}+}{r_{A^{-}}}$
D. Radius ratio
4. $n \lambda=2 d \sin \theta$

Answer: (c)4, 1, 2, 3

- View Text Solution

1. Assertion (A) : Amorphous solids are isotropic in nature.

Reason (R) : In amorphous solids, they have identical values of physical properties such as
refractive index, electrical conductance in all directions which is called isotropy.
A. Both A and R are correct and R is the correct explanation of A.
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct
2. Assertion (A) : Crystalline solids are anisotropic in nature.

Reason (R) : Anisotropy is the property which depends on the direction of measurement. Crystalline solids are anisotropic and they show different values of physical properties when measured along different directions. Both A and R are correct and R is the correct explanation of A.
A. Both A and R are correct and R is the correct explanation of A.
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

- View Text Solution

3. Assertion (A) : Ionic solids do not conduct electricity in solid state but in molten state they conduct electricity.

Reason (R) : In solid state, the ions are fixed in their lattice positions but in molten state, the ions are free to move and conduct electricity
A. Both A and R are correct but R is not the correct explanation of A
B. Both A and R are correct and R is the correct explanation of A.
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: b

D View Text Solution

4. Assertion (A) : Diamond and Silicon carbide are very hard and have high melting point.

Reason (R) : In covalent solids, the atoms are bound together in a three dimensional network entirely by covalent bonds.
A. Both A and R are correct but R is not the correct explanation of A
B. Both A and R are correct and R is the correct explanation of A.
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

- View Text Solution

5. Assertion (A) : Solid CO_{2} Solid NH_{3} have higher melting points

Reason (R): The constituents are molecules formed by polar covalent bonds. They are held together by relatively strong dipole- dipole interactions.
A. A is correct but R is wrong
B. A is wrong but R is correct
C. A and R are correct and R is the correct explanation of
A.
D. A and R are correct but R is not the correct explanation of A

Answer: c

- View Text Solution

6. Assertion (A) : Solid ice, Glucose are generally soft solids under room temperature

Reason (R): The constituents are held together by strong electrostatic forces of attraction
A. Both A and R are correct and R is the correct explanation of A.
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: c

- View Text Solution

7. Assertion (A) : In bcc, the available volume is more efficiently used than in simple cubic packing.

Reason (R) : In simple cubic arrangement, the number of
spheres belongs to a unit cell is equal to one whereas in bcc, it is equal to 2 .
A. Both A and R are correct and R is the correct explanation of A .
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

8. Assertion (A) : $B_{2} O_{3}$ has trigonal planar structure.

Reason (R) : The ratio of radius of cation and anion $\frac{r_{c^{+}}}{r_{A^{-}}}=0.155-0.225$ plays an important role in determining the structure and $\mathrm{B}_{2} \mathrm{O}_{3}$ has coordination number as 3 and has trigonal planar structure.
A. Both A and R are correct and R is the correct explanation of A.
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

9. Assertion (A) : Schottky defect does not change the stoichiometry of the crystal.

Reason (R) : This defect arises due to the missing of equal number of cations and anions from the crystal lattice.
A. Both A and R are correct but R is not the correct explanation of A
B. Both A and R are correct and R is the correct explanation of A
C. A is correct but R is wrong.
D. A is wrong but R is correct

Answer: b
10. Assertion (A) : Zinc oxide is colourless at room temperature but on heating it becomes yellow in colour.

Reason (R) : On heating Zinc loses oxygen and thereby forming free $Z n^{2+}$ ions. The excess $Z n^{2+}$ ions move to interstitial sites and the electrons also occupy interstitial positions.
A. Both A and R are correct and R is the correct explanation of A .
B. Both A and R are correct but R is not the correct explanation of A
C. A is correct but R is wrong
D. A is wrong but R is correct

Answer: a

- View Text Solution

Additional Questions V Find The Odd One Out

1. Find the odd one out
A. Plastic
B. Rubber
C. Glucose
D. Glass

Answer: c
2. Find the odd one out
A. Anthracene
B. Naphthalene
C. Glucose
D. Sodium chloride

Answer: d

- View Text Solution

3. Find the odd one out
A. Sodium
B. Pottasium
C. Frozen elements of group 18
D. Gold

Answer: c

D View Text Solution

4. Find the odd one out
A. Solid Co_{2}
B. Solid ice
C. Glucose
D. Urea

Answer: a

D View Text Solution
5. Find the odd one out
A. Cubic
B. Rhombohedral
C. Hexagonal
D. Cyclic

Answer: d

D View Text Solution

Additional Questions Vi Find Out The Correct Pair

1. Find out the correct pair
A. Glass, plastic
B. Rubber, ice
C. Nacl, Glucose
D. Urea, solid NH_{3}

Answer: a

D View Text Solution
2. Find out the correct pair
A. $N a C l, K C I$
B. $\mathrm{FeO}, \mathrm{ZnO}$
C. $\mathrm{AgBr}, \mathrm{AgNO}_{3}$
D. $V O, Z n O$

Answer: a

- View Text Solution

3. Find out the correct pair
A. Solid CO_{2}, Solid ice
B. Solid CO_{2} Solid NH_{3}
C. Graphite, Silicon carbide
D. Naphthalene, Phenol

Answer: b

- View Text Solution

4. Find out the correct pair
A. $N a C I, S i C$
B. Naphthalene, anthracene
C. Solid ice, graphite
D. Copper, KCl

Answer: b

D View Text Solution

1. Find out the incorrect pair
A. $N a C I, K C I$
B. Naphthalene, anthracene
C. Solid CO_{2} Solid NH_{3}
D. Diamond, solid ice

Answer: d

- View Text Solution

2. Find out the incorrect pair
A. $C u, F e$
B. Glucose, Urea
C. Diamond, SiC
D. Benzene, glucose

Answer: d

- View Text Solution

Additional Questions 2 Mark Questions

1. What are crystalline solid ? Give example.

D View Text Solution

2. What are amorphous solid ? Give example.

- View Text Solution

3. What are covalent solids ? Give example.

- View Text Solution

4. Silicon carbide is very hard. Justify this statement.

D View Text Solution

5. Write a note about molecular solids.

- View Text Solution

6. What are non-polar molecular solids ? Give example.

- View Text Solution

7. What are hydrogen bonded molecular solids ? Give example.

D View Text Solution

8. Define crystal lattice.

- View Text Solution

9. Define coordination number.
10. Draw the tetragonal crystal systems

- View Text Solution

11. Draw the hexagonal primitive erystal structure.

D View Text Solution

12. Draw the types of monoclinic primitive cubic crystals.

- View Text Solution

13. Draw the primitive cubes (i) trigonal (i) triclinic

D View Text Solution

14. What is Bragg's equation?

- View Text Solution

15. What is meant by linear arrangement of spheres in one direction?

- View Text Solution

16. What is meant by Piezo electricity?
17. Why are solids rigid ?

- View Text Solution

18. Why do solids have a definite volume?

D View Text Solution

19. Classify the following as amorphous or crystalline solids :

Polyurethane, naphthalene, benzoic acid, teflon, potassium nitrate, cellophane, polyvinyl chloride, fibre glass, copper.
20. Why is glass considered as super cooled liquid ?

D View Text Solution

21. Refractive index of a solid is observed to have the same value along all directions. Comment on the nature of this solid. Would it show cleavage property?

- View Text Solution

22. Classify the following solids in different categories based on the nature of intermolecular forces operating in them :

Potassium sulphate, tin, benzene, urea, ammonia, water, zinc
sulphide, graphite, rubidium, argon, silicon carbide.
23. Solid A is a very hard electrical insulator in solid as well as in molten state, and melts at extremely high temperature.

What type of solid is it ?

- View Text Solution

24. Ionic solids conduct electricity in molten state but not in solid state, Explain.

- View Text Solution

25. An element with molar mass $2.7 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}$ forms
a cubic unit cell with edge length 405 pm . If the density is
$2.7 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$, what is the nature of the cubice unit cell?

- View Text Solution

26. Ionic solids, which have anionic vacancies due to metal excess defect develop colour. Explain with the help of suitable example.

D View Text Solution

27. Classify each of the following solids as ionic, metallic, molecular, network (covalent) or amorphous. (i) Tetra phosphorous decoxide $\left(P_{4} O_{10}\right)$ (ii) Ammonium Phosphate $\left.\left(\mathrm{NH}_{4}\right)_{3}, \mathrm{PO}_{4}\right)$ (iii) Sic (iv) I_{2} (v) P4 (vi) Plastic (vii) Graphite (viii) Brass (ix) Rb (x) $\operatorname{LiBr}(x i) \mathrm{Si}$
28. What is the formula of a compound in which the element Y forms cep Lattice and atoms of X occupy $2 / 3$ rd of tetrahedral voids?

D View Text Solution

29. The energy required to vapourise one mole of copper is smaller than that of energy required to vapourise 1 mol of diamond. Why?
30. Assign reason for the following :
(i) phosphorous doped silicon is a semiconductor.
(ii) Schottky defect lowers the density of a solid.

D View Text Solution

Additional Questions 3 Mark Questions

1. Distinguish between isotropy and anisotropy?

D View Text Solution

2. What are polar molecular solids ? Give example.
3. Write a note about metallie solids.

- View Text Solution

4. What are characteristic parameters of a unit cell ?

- View Text Solution

5. What are type of unit cells ? Give their names.

D View Text Solution

6. Draw the seven types of primitive erystal systems.
7. Draw the types of cubic crystal systems.

- View Text Solution

8. Draw the types of orthorhombic cubic crystal systems.

- View Text Solution

9. Calculate the number of atoms belong to one unit cell of simple cubic unit cell(sc)

- View Text Solution

10. Calculate the number of atoms per unit cell of bee type.

D View Text Solution

11. How will derive the formula of density of a unit cell ?

- View Text Solution

12. Calculate the packing fraction of simple cubic arrangement.

- View Text Solution

13. What is meant by packing efficiency? How is it measured ?
14. Calculate the packing efficiency in fcc unit cell ?

- View Text Solution

15. How is radius ratio is useful in determination of structure of an lonic compound ?

- View Text Solution

16. What is meant by impurity defect ? Explain with example ?

- View Text Solution

17. A compound is formed by two elements M and N. The element N forms ccp and atoms of M occupy $1 / 3$ rd of the tetrahedral voids. What is the formula of the compound ?

D View Text Solution

18. How many lattice points are there in one unit cell of each of the following lattice?
(i)Face-centred cubic (ii) Face-centred tetragonal (iii) Bodycentered

D View Text Solution

19. Explain:
(i) The basis of similarities and differences between metallic
and ionic crystals.
(ii) Ionic solids are hard and brittle.

- View Text Solution

20. ZnO is colourless at room temperature, while yellow when hot. Why ?

D View Text Solution

Additional Questions 5 Mark Questions

1. What are general characteristics of solids?
2. Write a note about classification of solids with suitable examples.

- View Text Solution

3. What are ionic solids ? Give their charaeteristics.

D View Text Solution

4. What are molecular solids ? Explain their classification with suitable examples.
5. An element crystallizes in a fee lattice with cell edge of 400 pm . The density of the element is $7 \mathrm{~g} / \mathrm{cm} 3$. How many atoms one present in 280 g of the element?

D View Text Solution

