

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

APPLICATIONS OF INTEGRATION

Example

1. Estimate the value of $\int_0^{0.5} x^2 dx$ using the

Riemann sums corresponding to 5

subintervals of equals witch and applying (i) left-end rule (ii) right-end rule (iii) the midpoint rule.

Watch Video Solution

Watch Video Solution

3. Evaluate $\int_{0}^{1} x^{3} dx$, as the limit of a sum.

2. Evaluate $\int_{0}^{1} x dx$, as a the limit of a sun.

4. Evaluate $\int_{1}^{4} \left(2x^2+3
ight) \, \mathsf{dx}$, as the limit of a sum

Watch Video Solution

5. Evaluate $\int_0^3 \left(3x^2-4x+5\right) dx$.

6. Evaluate $\int_{0}^{1} \frac{2x+7}{5x^2+9} \, dx$,

Watch Video Solution

7. Evaluate, $\int_0^1 [2x] dx$ where [.]is the greatest integer funtion.

Watch Video Solution

8. Evaluate $\int_{0}^{\frac{\pi}{3}} \frac{\sec x \tan x}{1 + \sec^2} x dx$

9. Evaluate
$$\int_0^9 \frac{1}{x + \sqrt{x}} dx$$
.

10.
$$\int_{1}^{2} \frac{xdx}{(x+1)(x+2)}$$
.

11. Evaluate:
$$\int_0^{rac{\pi}{2}} rac{\cos heta}{(1+\sin heta)(2+\sin heta)} d heta.$$

12. Evaluate:
$$\int_0^{\frac{1}{\sqrt{2}}} \frac{\sin^{-1} x}{(1-x^2)^{\frac{3}{2}}} dx$$
.

13. Evaluate: $\int_0^{\frac{\pi}{2}} \left(\sqrt{\tan x} + \sqrt{\cot x} \right) dx$.

View Text Solution

14. Evaluate: $\int_{0}^{1.5} [x^2] dx$, where [x] is the greatest integor funtion.

Watch Video Solution

15. Evaluate: $\int_{-4}^{4} |x+3| dx$.

Watch Video Solution

16. Show that $\int_0^{rac{\pi}{2}} rac{dx}{4+5\sin x} = rac{1}{3} \mathrm{log}_e \, 2$

View Text Solution

17. Prove that
$$\displaystyle \int_0^{rac{\pi}{4}} rac{\sin 2x dx}{\sin^4 x + \cos^4 x} = rac{\pi}{4}$$

18.

Evaluate:

$$\int_0^{rac{\pi}{4}}rac{dx}{a^2\sin^2x+b^2\cos^2x}=rac{1}{ab} an^{-1}\Big(rac{a}{b}\Big),$$

where a,b>0

20. Show that
$$\int_0^\pi g(\sin x) dx = 2 \int_0^{\frac{\pi}{2}} g(\sin) dx, \qquad \text{where}$$
 $g(\sin x)$ is a function of $\sin x$.

Watch Video Solution

21. Evaluate $\int_0^\pi \frac{x}{1+\sin x} dx$.

Show

that

$$\int_0^{2\pi} g(\cos x) dx = 2 \int_0^\pi g(\cos x) dx$$
, wher $g(\cos x)$ is a function of $\cos x$.

Watch Video Solution

23. If
$$\int (x) = \int (a+b)$$
, then
$$\int_0^{2a} \int = \int = (x) = 2 \int_0^a \int (x) dx$$

View Text Solution

24. Evaluate : $\int_{-\pi}^{\frac{\hbar}{2}} x \cos x dx$.

- **25.** Evaluate: $\int_{-\log 2}^{\log 2} e^{-\left|x\right|} \, \mathrm{dx}.$
 - Watch Video Solution

- **26.** Evaluate $\int_0^a \frac{f(x)}{f(x) + f(a-x)} dx.$
 - **Watch Video Solution**

27. Prove that $\int_0^{\frac{\pi}{4}} \log(1+\tan x) dx = \frac{\pi}{8}$ log2.

Watch Video Solution

28. Show that

$$\int_0^1 an^{-1} x + an^{-1} (1-x) dx = rac{\pi}{2} - \log_e 2$$

29. Evaluate: $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5} - x + \sqrt{x}} dx.$

Watch Video Solution

30. Evaluate $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx.$

Watch Video Solution

31. Evaluate $\int_{0}^{\pi} x^{2} \cos nx dx$, where n is positive integer.

32. Evaluate:
$$\int_0^1 e^{-2x} ig(1+x-2x^3ig) \mathrm{dx}.$$

33. Evaluate: $\int_0^{2\pi} x^2 \sin nx dx$, where n is positive integer.

34. Evaluate: $\int_{-1}^{1} e^{-\lambda x} (1-x^2) dx$.

Watch Video Solution

35. Evaluate: $\int_{b}^{\infty} \frac{1}{a^2+x^2} \mathrm{d} \mathbf{x}$,a>0,in RR.

Watch Video Solution

36. Evaluate: $\int_0^{\frac{\pi}{2}} \frac{dx}{4\sin^2 x + 5\cos^2 x}$

37. Evaluate $\int_0^{\frac{\pi}{2}} \left(\sin^2 x + \cos^4 x\right) \mathsf{d} \mathsf{x}$

Watch Video Solution

38. Evaluate: $\int_{0}^{\frac{\pi}{2}} \left| \frac{\cos^{4} x}{\sin^{5} x} \right|^{7} dx$.

Watch Video Solution

39. Find the values of the following: (i)

$$\int_0^{rac{\pi}{2}} \sin^5 x \cos^4 x dx$$

(ii) $\int_{\hat{a}}^{\frac{\pi}{2}} \sin^4 x \cos^6 x dx$

Watch Video Solution

40. Evaluate: $\int_0^{2a} x^2 \sqrt{2ax - x^2} dx$.

Watch Video Solution

41. Evaluate: $\int_{0}^{1} x^{5} (1-x^{2})^{5} dx$.

42. Evaluate: $\int_{0}^{1} x^{3} (1-x)^{4} dx$.

Watch Video Solution

43. Prove that $\int_0^\infty x^n e^{-x} dx = n!$, Where n is a positive integer.

Watch Video Solution

44. Evaluate : $\int_0^\infty e^{-ax} x^n dx$, where a>0.

45. Show that $\Gamma(n)=2\int_0^\infty e^{-x^2}x^{2n-1}\mathrm{dx}.$

Watch Video Solution

46. Evaluate $\int_0^\infty \frac{x^n}{n^x} \mathrm{dx}$, where n is a positive integer.

47. Find the area of the region bounded by the line 6x+5y=30, x-axis and the lines x=-1 and x=3.

Watch Video Solution

48. Find the area of the region bounded by the line 7x-5y=35, x-axis and the lines x=-2 and x=3.

Watch Video Solution

49. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

50. Find the area of the parabola $y^2=4ax$ and its latus rectum.

51. Find the area of the region bounded by y axis and the parabola $x=5-4y-y^2$.

52. Find the area of the region bounded by x-axis, the sine curve y=sinx, the lines x=0 and $x=3\pi$.

View Text Solution

53. Find the area of the region bounded by x-axis, the curve $y=|\cos x|$, the lines x=0 and $x=\pi.$

54. Find the area of the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.

Watch Video Solution

55. Find the area of the region bounded between the parabola $x^2=y$ and the curve $y=|\mathbf{x}|$.

56. Find the area of the region bounded by

$$y=\cos x,\,y=\sin x$$
, the lines

$$x = \frac{\pi}{4}$$
 and $x = \frac{5\pi}{4}$.

Watch Video Solution

57. The region enclosed by the circle $x^2+y^2=a^2$ is divided into two sgmwnts by the line x=h. Find the area of the smaller segment.

58. Find the area of the region if the first quadrant bounded by the parabola $y^2=4x$, the line x+y=3 and y-axis.

Watch Video Solution

59. Find by integration, the area of the region bounded by the lines

5x-2y=15, x+4=0 and the x-axis.

View Text Solution

60. Using integration find the area of the region bounded by triangle ABC, whose vertices A,B and C are (-1,1),(3,2), and (0,5) respectively.

Watch Video Solution

61. Using integration find the area of the region which is bounded bt x-axis the tangent and normal to the circle $x^2+y^2=4$ drawn at $(1,\sqrt{3}).$

62. Find the volume of the sphere of radius a.

63. Find the volume of a right-circular cone of base radius r and height h.

64. Find the volume of the spherical cap of height h cut of feom a sphere of radius r.

View Text Solution

65. Find the volume of the solid formed by revolving the region bounded by the parabola $y=x^2$, x-axis, ordinates x=0 and x=1 about the x-axis.

View Text Solution

66. Find the volume of the solid formed by revolving the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a>b \text{ about the major x-axis,}$

View Text Solution

67. Evaluate the volume of the solid generated by revolving about y axis the region bounded between the parabola $y^2=x+1$, the y axis and the lines y=1 and y=-1.

68. Find, by intregration, the volume of the solid generated by revolving about y-axis the region bounded between the curve $y=rac{3}{4}\sqrt{x}^2-16, x\geq 4$, the y-axis and the lines y=1 and y=6

View Text Solution

69. Find , by integration , the volume of the solid generated by revolving about y axis, the

region bounded by the curve

$$y = \log x, y = 0, x = 0 \text{ and } y = 2.$$

Watch Video Solution

Exercise 91

1. Find an approximate value of $\int_{1}^{1.5} x dx$ by applying the left-end rule with the partition $\{1.1, 1.2, 1.3, 1.4, 1.5\}$

2. Find an approximate value of $\int_1^{1.5} x dx$ by applying the left-end rule with the partition $\{1.1, 1.2, 1.3, 1.4, 1.5\}$

A.

В.

C.

D.

Answer: 0.855

3. Find an approximate value of
$$\int_1^{1.5} (2-x) dx \ \text{by applying the mid-point rule}$$
 with the partition $\{1.1, 1.2, 1.3, 1.4, 1.5\}$

Exercise 9 2

1. Evaluate rhe following integrats as the limits of sum: (i) $\int_0^1 (5x+4) dx$.

(ii)
$$\int_{1}^{2} (4x^{2} - 1) dx$$
.

Exercise 9 3

1. Evaluate the following definite integrals:

$$\int_{-1}^{1} \frac{dx}{x^2 + 2x + 5}$$

Watch Video Solution

Exercise 9 4

1. Evaluate $\int_0^1 xe^{-2x} dx$

Watch Video Solution

2. Evaluate the following:

$$\int_0^1 \frac{\sin(3\tan^{-1}x)\tan^{-1}x}{1+x^2} dx$$

Watch Video Solution

3. Evaluate the following:

$$\int_0^{rac{1}{\sqrt{2}}} rac{e^a \sin^{-1} x \sin^{-1} x}{\sqrt{1-x^2}} dx$$

4. Evaluate :
$$\int_{rac{-\pi}{2}}^{rac{\pi}{2}} x \cos x dx$$
.

Exercise 9 5

1. Evaluate the following:

$$\int_0^{rac{\pi}{2}} rac{dx}{1+5\cos^2 x}$$

Exercise 9 6

1. Evaluate the following:

$$\int_0^{rac{\pi}{2}} \sin^{10}x dx$$

Watch Video Solution

Exercise 9 7

1. Evaluate the following:

$$\int_0^\infty x^5 e^{-3x} dx$$

Watch Video Solution

- **2.** If $\int_0^\infty e^{-ax^2x^3dx=32, \alpha>0}$, find α .
 - 0

1. Find the area of the region bounded by

3x - 2y + 6 = 0, x = -3, x = 1 and x -axis.

Watch Video Solution

2. Find the area of the region bounded by

2x - y + 1 = 0, y = -1, y = 3 and y -axis.

3. Find the area of the region bounded by the curve $2+x-x^2+y=0$, x-axis, x=-3 and x= 3

Watch Video Solution

4. Find the area of the region bounded by the line y=2x+5 and the parabola $y=x^2-2x$

5. Find the area of the region bounded between the curves $y=\sin x$ and $y=\cos x$ and the lines x = 0 and $x=\pi$.

Watch Video Solution

6. Find the area of the region bounded by $y=\tan x,\,y=\cot x$ and the line $x=0,\,x=rac{\pi}{2},\,y=0$

7. Find the area of the region bounded by the parabola $y^2=x$ and the line y=x-2

Watch Video Solution

8. Father of a family wishes to divide his square field bounded by $x=0,\,x=4,\,y=4,$ and y=0 along the curve $y^2=4x$ and $x^2=4y$ into three equal parts for his wife, daughter and son. Is it possible to divide ? If so, find the area to be divided among them.

9. The curve $y=(x-2)^2+1$ has a minimum point at P.A point Q on the curve is such that the slope of PQ is 2. Find the area bounded by the curve and the chord PQ.

Watch Video Solution

10. Find the area of the region common to the circle $x^2+y^2=16$ and the parabola $y^2=6x$

Exercise 9 9

1. Find,by integration, the volume of the solid generated by revolving about the x-axis, the region enclosed by $y=2x^2,\,y=0$ and x=1.

Watch Video Solution

2. Find, by integration, the volume of the solid generated by revolving about the x-axis, the

region enclosed by $y=e^{-2x}y=0, x=0$ and

x = 1

3. Find, by integration , the volume of the solid generated by revolving about the y-axis, the region enclosed by $x^2=1+y$ and y=3.

4. The region enclosed between the graphs of y=x and $y=x^2$ is denoted by R, Find the volume generated when R is rotated through 360° about x - axis.

Watch Video Solution

5. find the integration, the volume of the container which is in the shape of a right circuler conical frustum as shown in the figure.

6. A watermelon has an ellipsoid shade which can be obtained by revolving an ellipse with major-axis 20 cm and minor-axis 10 cm about its major-axis. Find its volume using integration.

Watch Video Solution

Exercise 9 10

1. The value of $\int_0^{rac{2}{3}} rac{dx}{\sqrt{4-9x^2}}$ is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{4}$$

Answer: A

2. The value of
$$\int_{-1}^{2} |x| dx$$

A.
$$\frac{1}{2}$$

$$\mathsf{B.}\;\frac{3}{2}$$

$$\mathsf{C.}\ \frac{5}{2}$$

$$\mathsf{D.}\,\frac{7}{2}$$

Answer: C

$$n \in Z, \int_0^\pi e^{\cos^2 x} \cos^3 [(2n+1)x] dx$$
 is

A.
$$\frac{\pi}{2}$$

$$B.(\pi)$$

Answer: C

4. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos x dx$ is

$$\mathsf{A.}\;\frac{3}{2}$$

$$\mathsf{B.}\;\frac{1}{2}$$

D.
$$\frac{2}{3}$$

Answer: D

The

value

of

$$\int_{-4}^4 \left[an^{-1} \left(rac{x^2}{x^4+1}
ight) + an^{-1} \left(rac{x^4+1}{x^2}
ight)
ight] dx$$

is

 $A. \pi$

 $B.2\pi$

 $C.3\pi$

D. 4π

Answer: D

The

value

of

$$\int_{-rac{\pi}{4}}^{rac{\pi}{4}}igg(rac{2x^7-3x^5+7x^3-x+1}{\cos^2x}igg)dx$$
 is

- A. 4
- B. 3
- C. 2
- D. 0

Answer: B

7. If
$$f(x) = \int_0^x t \cos t dt$$
, then $\frac{df}{dx}$

A. cos x-xsin x

B. sin x+xcos x

C. xcos x

D. xsin x

Answer: C

8. The area between $y^2=4x$ and its latus rectum is

A.
$$\frac{2}{3}$$

B.
$$\frac{4}{3}$$

c.
$$\frac{8}{3}$$

D.
$$\frac{5}{3}$$

Answer: C

9. The value of
$$\int_{0}^{1} x(1-x)^{99} dx$$
 is

A.
$$\frac{1}{11000}$$

B.
$$\frac{1}{10100}$$

C.
$$\frac{1}{10010}$$
D. $\frac{1}{10001}$

Answer: B

10. The value of
$$\int_0^\pi \frac{dx}{1+5^{\cos x}}$$
 is......

A.
$$\frac{\pi}{2}$$

B. π

$$\mathsf{C.}\,\frac{3\pi}{2}$$

D. 2π

Answer: A

Watch Video Solution

11. The value of $\dfrac{r(n+2)}{r(n)}=90$ then n is

A. 10

- B. 5
- C. 8
- D. 9

Answer: D

Watch Video Solution

12. The value of $\int_0^{rac{\pi}{6}} \cos^3 3x dx$

- A. $\frac{2}{3}$ B. $\frac{2}{9}$

C.
$$\frac{1}{9}$$

D.
$$\frac{1}{3}$$

Answer: B

13. The value of
$$\int_0^\pi \sin^4 x dx$$
 is

A.
$$\frac{3\pi}{10}$$

B.
$$\frac{3\pi}{8}$$

$$\frac{3\pi}{4}$$

D.
$$\frac{3\pi}{2}$$

Answer: B

14. The value of
$$\int_0^\infty e^{-3x} x^2 dx$$
 is

A.
$$\frac{7}{27}$$

B.
$$\frac{5}{27}$$

c.
$$\frac{4}{27}$$

$$\mathsf{D.}\;\frac{5}{27}$$

Answer: D

Watch Video Solution

15. If
$$\int_0^a = \frac{1}{4+x^2} dx = \frac{\pi}{8}$$
 then a is

A. 4

B. 1

C. 3

D. 2

Answer: D

16. The volume of solid of revolution of the region bounded by $y^2=x(a-x)$ about xaxis is

A.
$$(\pi a)^2$$

B.
$$\frac{\pi a^3}{4}$$

C.
$$\frac{\pi a^3}{5}$$

D.
$$\frac{\pi a^3}{6}$$

Answer: D

17. If
$$f(x)=\int_1^x \frac{e^{\sin x}}{u}du, x>1$$
 and
$$\int_1^3 \frac{e^{\sin x^2}}{x}dx=\frac{1}{2}[f(a)-f(1)], \text{ then one of the possible value of a is}$$

A. 3

B. 6

C. 9

D. 5

Answer: C

Watch Video Solution

18. The value of
$$\int_0^1 (\sin^{-1} x)^2 dx$$
 is

A.
$$\frac{(\pi)^2}{4} - 1$$

B.
$$\frac{\left(\pi\right)^2}{4}+2$$

$$\mathsf{C.}\,\frac{\left(\pi\right)^2}{^4}+1$$

D.
$$\frac{(\pi)^2}{4} - 2$$

Answer: D

19. The value of
$$\int_0^a \left(\sqrt{a^2-x^2}\right)^3 dx$$
 is.......

A.
$$\frac{\pi a^3}{16}$$

B.
$$\frac{3\pi a^4}{16}$$

c.
$$\frac{3\pi a^2}{8}$$

D.
$$\frac{3\pi a^4}{8}$$

Answer: B

20. If
$$\int_0^x f(t)dt = x + \int_x^1 t f(t)dt$$
, then the value of f(1) is

A.
$$\frac{1}{2}$$

B. 2

C. 1

D. $\frac{3}{4}$

Answer: A

Additional Problems

1. Evaluate as the limit of sums $:\int_1^3 \left(2x^2+5\right)$ dx

View Text Solution

2. Evaluate as the limit of sums:

$$\int_{1}^{2} \left(x^{2}-1\right) dx$$

3. Evaluate : $\int_0^2 \left(x^2+x+2\right) dx$.

Watch Video Solution

4. Evaluate: $\int_{-\pi/4}^{\pi/4} x^3 \sin^2 x dx$.

Watch Video Solution

5. Evaluate $\int_{-1}^{1} \log \left(\frac{3-x}{3+x} \right) dx$.

6. Evaluate: $\int_{-\pi/2}^{\pi/2} x \sin dx$

Watch Video Solution

7. Evaluate : $\int_0^1 x(1-x)^n dx$.

Watch Video Solution

8. Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\cot x}}$.

View Text Solution

9. Evaluate : $\int_0^{2\pi} \frac{\cos x}{\sqrt{4+3\sin x}} dx$

Watch Video Solution

10. Evaluate: $\int_0^{\pi/4} \frac{\sin^3 x}{\cos^5 x} dx$

Watch Video Solution

11. Evaluate: $\int_0^{\pi/2} \sqrt{\sin \theta} \cos^5 \theta d\theta$

12. Evaluate: $\int_0^{\pi/3} \frac{\sec x \tan x}{1 + \sec^2 x} dx$

View Text Solution

13. Evaluate, $\int_0^{\pi/2} \frac{dx}{5+4\sin x}$.

Watch Video Solution

14. Evaluate: $\int_{0}^{\pi/4} \frac{dx}{4 + 5\cos^{2}x}$.

View Text Solution

15. Evaluate:
$$\int_0^{\pi/2} \frac{dx}{4 + 9\cos^2 x}$$

Watch Video Solution

16.
$$\int_0^{\frac{\pi}{2}} \sin^7 x dx$$
 is :

Watch Video Solution

17. Evaluate $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x dx$.

18. Find the area of the region bounded by

$$y^2 = 4ax$$
 and $x = |y|$.

19. Find the area of bounded by the curve $y=x^3$ and thr liney=x.

20. Find the area of the loop and the curve

$$3ay^2 = x(x-a)^2 1.$$

View Text Solution

21. Find the area between the line y=x+1 and the curve $y=x^2-1$

22. The volume of the solid that results when the region enclosed by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is revolved about the minor axis is :

Watch Video Solution

23. Find the volume of the solid generated when the region enclosed by $y=\sqrt{x},\,y=3$ and x=0 is revolved about y axis.

24. The area bounded by the line y=x, the x-axis

, the ordinates x=1,x=2 is

- $\mathsf{A.}\;\frac{3}{2}$
- $\mathsf{B.}\;\frac{5}{2}$
- $\mathsf{C.}\ \frac{1}{2}$
- $\mathsf{D.}\,\frac{7}{2}$

Answer: a

25. The area of the region bounded by the graph of $y=\sin x$ and $y=\cos x$ between x = 0 and $x=\frac{\pi}{4}$ is

A.
$$\sqrt{2}$$

B.
$$\sqrt{2} - 1$$

C.
$$\sqrt[2]{2} - 2$$

D.
$$\sqrt[2]{2} + 2$$

Answer: b

26. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

A.
$$\pi b(a-b)$$

B.
$$2\pi a(a-b)$$

$$\mathsf{C}.\,\pi a(a-b)$$

D.
$$2\pi b(a-b)$$

Answer: c

27. The area bounded by the parabola $y^2=x$ and its latus rectum is

- A. $\frac{4}{3}$
- $\mathsf{B.}\;\frac{1}{6}$
- $\mathsf{C.}\,\frac{2}{3}$
- D. $\frac{8}{3}$

Answer: B

28. The volume of solid obtained by revolving

$$rac{x^2}{9}+rac{y^2}{16}=1$$
 about the minor axis :

- A. 48π
- B. 64π
- $\mathsf{C.}\ 32\pi$
- D. 128π

Answer: b

29. The volume when $y=\sqrt{3+x^2}$ from x = 0

A. 100π

B.
$$\frac{100}{9}\pi$$

C.
$$\frac{100}{3}\pi$$

D.
$$\frac{100}{9}$$

Answer: c

30. the volume generated when the region bounded by 'y=x, y=1, x=0, is rotated about y-axis is

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{2\pi}{3}$$

Answer: c

31. Volume of solid obtained by revolving the area of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ about major and minor axes are in tha ratio.....

A.
$$b^2 : a^2$$

B.
$$a^2 : b^2$$

Answer: d

32. The volume generated by rotating the triangle with vertices at (0,0), (3,0) and (3,3) about x-axis is

- A. 18π
- B. 2π
- $\mathsf{C.}\ 36\pi$
- D. 9π

Answer: d

33. The length of th arc of the curve

$$x^{2/3} + y^{2/3} = 4$$
 is....

- A. 48
- B. 24
- C. 12
- D. 96

Answer: a

34. The surface area of the solid of revolution

of the region bounded by $y=2x, x=0 \ {
m and} \ x=2$ about x-axis is....

A.
$$8\sqrt{5}\pi$$

B.
$$2\sqrt{5}\pi$$

C.
$$\sqrt{5}\pi$$

D.
$$4\sqrt{5}\pi$$

Answer: a

35. The curved surface area of a sphere of radius 5, intercepted between two paeallel planes of distance 2 and 4 from the centre is

- A. 20π
- B. 40π
- $\mathsf{C.}\ 10\pi$
- D. 30π

Answer: a

