©゙’doubtnut

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

DIFFERENTIALS AND PARTIAL DERIVATIVES

Example Questions Solved

1. Find the linear approximation for $f(x)=\sqrt{1+x}, x \geq-1$, at $x_{0}=3$. Use the linear approximation to estimate $\mathrm{f}(3.2)$.

- Watch Video Solution

2. The approximate value of $\sqrt{9.2}$ is:
3. Let us assume that the the the shape of a soap bubble is a sphere. Use linear approximation to approximate the increase in the surface area of a soap bubble as its radius increases from 5 cm to 5.2 cm also calculate the percentage error.

- Watch Video Solution

4. A right circular cylinder has radius $\mathrm{r}=10 \mathrm{~cm}$ and height $\mathrm{h}=20$ cm suppose that the radius of the cylinder is increased from 10 cm to 10.1 cm and the height does not change. Estimate the change in the volume of the cylinder. Also calculate the relative error and percentage error .

- Watch Video Solution

5. Let $\mathrm{f}, \mathrm{g}:(a, b) \rightarrow R$ be differentiable functions. Show that $\mathrm{d}(\mathrm{fg})$
$=\mathrm{fdg}+\mathrm{gdf}$.

- Watch Video Solution

6. Let $g(x)=x^{2}+\sin x$. Calculate the differential dg.

- Watch Video Solution

7. If the radius of a sphere, with radius 10 cm , has to decrease by
0.1 cm approximately how much will its volume decrease ?

- Watch Video Solution

8. Consider $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$
. Show that f is not continuous at $(0,0)$ and continuous at all other
points of R^{2}.

- Watch Video Solution

9. Consider $g(x, y)=\frac{2 x^{2} y}{x^{2}+y^{2}}$. If $(x, y) \neq(0,0)$ and $g(0,0)=0$

Show that g is continuous on R^{2}.

- View Text Solution

10. Let $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$ if $x y \neq 0$ and $f(x, y)=1$ if $\mathrm{xy}=0$.
(i) Calculate : $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$
(ii) Show that f is not continuous at $(0,0)$

- Watch Video Solution

11. Let $\mathrm{F}(\mathrm{x}, \mathrm{y})=x^{3} y+y^{2} x+7$ for all $(x, y) \in R^{2}$. Calculate $\frac{\partial F}{\partial x}(-1,3)$ and $\frac{\partial F}{\partial y}(-2,1)$

- Watch Video Solution

12. If $\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2} y+y^{2} z+z^{2} x, x, y, z \in R$, find the differential dw.

- Watch Video Solution

13. Let $\mathrm{W}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}-x y+3 \sin z, x, y, z \in R$, Find the linear approximation at (2,-1,0).
14. Verify the above theorem for $F(x, y)=x^{2}-2 y^{2}+2 x y$ and $x(t)=\cos t, y(t)=\sin t, t \in[0,2 \pi]$

- Watch Video Solution

15.

Let
$(x, y)=x^{2}-y x+\sin (x+y), x(t)=e^{3 t}, y(t)=t^{2}, t \in R$.

Find $\frac{d g}{d t}$.

- Watch Video Solution

16. Let $g(x, y)=2 y+x^{2}, x=2 r-s, y=r^{2}+2 s, r, s \in \mathbb{R}$. Find $\frac{\partial g}{\partial r}, \frac{\partial g}{\partial s}$
17. Show that $F(x, y)=\frac{x^{2}+5 x y-10 y^{2}}{3 x+7 y}$ is a homogeneous function of degree 1.

D Watch Video Solution

18. $u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ show that
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$.

D Watch Video Solution

Exercise 81

1. Let $f(x)=\sqrt[3]{x}$. Find the linear approximation at $\mathrm{x}=27$. Use the linear approximation to approximate $\sqrt[3]{27.2}$
2. Using the approximation to find approximate value of $(123)^{\frac{2}{3}}$

- Watch Video Solution

3. Find a linear approximation for the following functions at the indicated points.
$f(x)=x^{3}-5 x+12, x_{0}=2$

- Watch Video Solution

4. The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm . Find the following is calculating the area of the circular plate:
(i) Absolute error
(ii) Relative error
(iii) Percentage error

- Watch Video Solution

5. A sphere is made of ice having radius 10 cm . Its radius decreases
from 10 cm to 9.8 cm . Find approximations for the following:
(i) change in the volume
(ii) change in the surface area

D Watch Video Solution

6. The time T, taken for a complete oscillation of a single pendulam
with length I , is given by the equation $T=2 \pi \sqrt{\frac{l}{g}}$, where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of I .
7. Show that the percentage error in the nth root of a number is approximately $\frac{1}{n}$ times the percentage error in the number.

Exercise 82

1. Find differential dy for $y=\frac{(1-2 x)^{3}}{3-4 x}$.

D Watch Video Solution

2. Find df for $f(x)=x^{2}+3 x$ and evalaute it for
(i) $x=2$ and $d x=0.1$
(ii) $\mathrm{x}=3$ and $\mathrm{dx}=0.02$

(Watch Video Solution

3. Find Δf and $d f$ for the function f for the indicated values of x ,
Δx and compare
$f(x)=x^{3}-2 x^{2}, x=2, \Delta x=0.5$

D Watch Video Solution

4. Assuming $\log _{10} e=0.4343$, find an approximate value of $\log _{10} 1003$.

- Watch Video Solution

5. The trunk of a tree has diameter 30 cm . During the following year, the circumference grew 6 cm .
(i) Approximately, how much did the tree's diameter grow?
(ii) What is the percentage increase in area of the tree's crosssection?

- Watch Video Solution

6. An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and radius to the outside of the shell is 5.3 mm , find the volume of the shell approximately.

- Watch Video Solution

7. Assume that the cross section of the artery of human is circular.

A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm , how much is crosssectional area increased approximately?
8. In a newly developed city, it is estimated that the voting population (in thousands) will increase according to $V(t)=30+12 t^{2}-t^{3}, 0 \leq t \leq 8$ where t is the time in years. Find the approximate change in voters for the time change from 4 to $4\left(\frac{1}{6}\right)$ year.

D Watch Video Solution

9. The relation between the number of words y a person learns in x hours is given by $y=52 \sqrt{x}, 0 \leq x \leq 9$. What si the approximate number of words learned when x changes from
(i) 1 to 1.1 hour?
(ii) 4 to 4.1 hour?
10. A circular plate expands uniformly under the influence of heat.

If it's radius increases from 10.5 cm to 10.75 cm , then find an approximate change in the area and the approximate percentage change in the area.

- Watch Video Solution

11. A coat of paint of thickness 0.2 cm is applied to the faces of a cube whose edge is 10 cm . Use the differentials to find approximately how many cubic centimeters of paint is used to paint this cube. Also calculate the exact amount of pain used to pain this cube.

- Watch Video Solution

1. Evaluate $\quad \lim , g(x, y)$, if the limit exist where $g(x, y)$ $(x, y) \rightarrow(1,2)$
$=\frac{3 x^{2}-x y}{x^{2}+y^{2}+3}$

D Watch Video Solution

2. Evaluate $\lim _{(x, y) \rightarrow(0,0)} \cos \left(\frac{x^{3}+y^{3}}{x+y+2}\right)$. If the limit exists.

- Watch Video Solution

3. Let $f(x, y)=\frac{y^{2}-x y}{\sqrt{x}-\sqrt{y}}$ for $(x, y) \neq(0,0)$. Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$

- Watch Video Solution

4. Evaluate $\lim _{(x, y) \rightarrow(0,0)} \cos \left(\frac{e^{x} \sin y}{y}\right)$, if the limit exists.

(Watch Video Solution

5. Let $g(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$ for $(\mathrm{x}, \mathrm{y}) \neq(0,0)$ and $\mathrm{f}(0,0)=0$.
(i) Show that $\quad \lim g(x, y)=0$ along every line

$$
(x, y) \rightarrow(0,0)
$$

$y=m x, m \in R$.
(ii) Show that $\lim _{(x, y) \rightarrow(0,0)} g(x, y)=\frac{k}{1+k^{2}}$, along every parabola $y=k x^{2}, k \in R\{0\}$.

D Watch Video Solution

6. Show that $f(x, y)=\frac{x^{2}-y^{2}}{y^{2}+1}$ is continous at every, $(x, y) \in R^{2}$
7. Let $g(x, y)=\frac{e^{y} \sin x}{x}$, for $x \neq 0$ and $\mathrm{g}(0,0)=1$. Show that g is continous at $(0,0)$.

- Watch Video Solution

Exercise 84

1. Find the partial derivatives of the functions at the indicated point
$f(x, y)=3 x^{2}-2 x y+y^{2}+5 x+2,(2,-5)$

- Watch Video Solution

2. For each of the functions find the f_{x}, f_{y}, and show that
$f_{x y}=f_{y x}$.
$f(x, y)=\tan ^{-1}\left(\frac{x}{y}\right)$

- Watch Video Solution

3. If $\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{x^{2}+y^{2}}{x y}+3 z^{2} y$, find $\frac{\partial U}{d x}+\frac{\partial U}{d y}+\frac{\partial U}{d z}$

- Watch Video Solution

4. If $U(x, y, z)=\log \left(x^{3}+y^{3}+z^{3}\right)$ find $\frac{\partial U}{d x}+\frac{\partial U}{d y}+\frac{\partial U}{d z}$

- Watch Video Solution

5. For each of the function find the $g_{x y}, g_{y y}$ and $g_{y x}$,

$$
g(x, y)=x e^{y}+3 x^{2} y
$$

6. If $\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}(y-z)+y^{2}(z-x)+z^{2}(x-y)$, then $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}$ is

- Watch Video Solution

7. If $V(x, y)=e^{x}(x \cos y-y \sin y)$, then prove that $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0$

- Watch Video Solution

8. If $w(x, y)=x y+\sin (x y)$, then prove that $\frac{\partial^{2} w}{\partial y \partial x}=\frac{\partial^{2} w}{\partial x \partial y}$
9. If $v(x, y, z)=x^{3}+y^{3}+z^{3}+3 x y z$, show that $\frac{\partial^{2} v}{\partial y \partial z}=\frac{\partial^{2} v}{\partial z \partial y}$

- Watch Video Solution

10. A firm produces two types of calculators each week, x number of type A and y number of type B. The weekly revenue and cost functions (in rupees) are
$R(x, y)$
$=80 x+90 y+0.04 x y-0.05 x^{2}-0.05 y^{2}$ and
$C(x, y)=8 x+6 y+2000$ respectively.
(i) Find the profit function $\mathrm{P}(\mathrm{x}, \mathrm{y})$.
(ii) Find $\frac{\partial P}{\partial x}(1200,1800)$ and $\frac{\partial P}{\partial y}(1200,1800)$ and interpret these results.

- Watch Video Solution

1. If $w(x, y)=x^{3}-3 x y+2 y^{2}, x, y \in R$, find the linear approximation for w at (1,-1).

- Watch Video Solution

2. Let $\mathrm{z}(\mathrm{x}, \mathrm{y}) \quad=x^{2} y+3 x y^{4}, x, y \in R$. Find the linear approximation for z at $(2,-1)$.

- Watch Video Solution

3. If $v(x, y)=x^{2}-x y+\frac{1}{4} y^{2}+7, x, y \in R$, find the differential dv.
4. Let $\mathrm{W}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}-x y+3 \sin z, x, y, z \in R$, Find the linear approximation at (2,-1,0).

- Watch Video Solution

5. Let $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy}+\mathrm{yz}+\mathrm{zx}, x, y, z \in R$. Find the differential d V .

- Watch Video Solution

Exercise 86

1. If $u(x, y)=x^{2} y+3 x y^{4}, x=e^{t}$ and $\mathrm{y}=\sin \mathrm{t}$, find $\frac{d u}{d x}$ and evaluate it at $\mathrm{t}=0$.

- Watch Video Solution

2. If $u(x, y, z)=x y^{2} z^{3}, x=\sin t, y=\cos t, z=1+e^{2 t}$, find $\frac{d u}{d x}$.

- Watch Video Solution

3. If $w(x, y, z)=x^{2}+y^{2}+z^{2}, x=e^{t}, y=e^{t} \sin t \quad$ and $z=e^{t} \cos t$, find $\frac{d w}{d t}$.

- Watch Video Solution

4. Let $U(x, y, z)=x y z, x=e^{-t}, y=e^{-t} \cos t, z=\sin t, t \in R$. Find $\frac{d U}{d t}$.

- Watch Video Solution

5. If $\mathrm{w}(\mathrm{x}, \mathrm{y})=6 x^{3}-3 x y+2 y^{2}, x=e^{s}, y=\cos s \in R$, find $\frac{d w}{d s}$, and evaluate at $\mathrm{s}=0$.

Watch Video Solution

6. If $\mathrm{z}(\mathrm{x}, \mathrm{y})=x \tan ^{-1}(x y), x=t^{2}, y=s e^{t}, s, t \in R$, Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ at $\mathrm{s}=\mathrm{t}=1$.

- Watch Video Solution

7. Let $z(x, y)=x e^{y}+y e^{-x}, x=e^{-t}, y=s t^{2}, s, t \in \mathbb{R}$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

- Watch Video Solution

8. $W(x, y, z)=x y+y z, x=u-v, y=u v, z=u+v, u, v$ in R. Find $\frac{\partial w}{\partial u}, \frac{\partial w}{\partial v}$ and evaluate them at $\left(\frac{1}{2}, 1\right)$

Exercise 87

1. In each of the following cases, determine whether the following function is homogeneous or not. If it is so, find the degree. (i) $f(x, y)=x^{2} y+6 x^{3}+7\left(\right.$ (ii) $h(x, y)=\frac{6 x^{2} y^{3}-\pi y^{5}+9 x^{4} y}{2020 x^{2}+2019 y^{2}}$

$$
\begin{equation*}
g(x, y, z)=\frac{\sqrt{3 x^{2}+5 y^{2}+z^{2}}}{4 x+7 y} \tag{iii}
\end{equation*}
$$

$U(x, y, z)=x y+\sin \left(\frac{y^{2}-2 z^{2}}{x y}\right)$

(Watch Video Solution

2. Prove that $f(x, y)=x^{3}-2 x^{2} y+3 x y^{2}+y^{3}$ is homogenous, what is the degree? Verify Euler's Theorem for f.

D Watch Video Solution

3. Prove that $g(x, y)=x \log \left(\frac{y}{x}\right)$ is homogenous, what is the degree? Verify Euler's Theorem for g.

- Watch Video Solution

4. If $u(x, y)=\frac{x^{2}+y^{2}}{\sqrt{x+y}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{3}{2} u$.

- Watch Video Solution

5. If $v(x, y)=\log \left(\frac{x^{2}+y^{2}}{x+y}\right)$, prove that $x \frac{\partial v}{\partial x}+y \frac{\partial v}{\partial y}=1$.

- Watch Video Solution

6. If $w(x, y, z)=\log \left(\frac{5 x^{3} y^{4}+7 y^{2} x z^{4}-75 y^{3} z^{4}}{x^{2}+y^{2}}\right)$, find
$x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}+z \frac{\partial w}{\partial z}$,

D Watch Video Solution

Additional Questions Solved

1. Using differentials, find the approximate value of each of the following upto 3 places of the following upto 3 places of decimal. $(255)^{\frac{1}{4}}$.

- Watch Video Solution

2. Using differentials, find the approximate value of each of the following upto 3 places of the following upto 3 places of decimal.

Watch Video Solution

3. Find approximate value of f (5.001) where $f(x)=x^{3}-7 x^{2}+15$

- Watch Video Solution

4. If the radius of a sphere, is measured as 7 m with an error of 0.02 m then find the approximate error in calculating its volume .

- Watch Video Solution

5. Find the differential dy and evaluate dy for the given values of x and dx .
6. The edge of a cube was found to be 30 cm with a possible error in measurement of 0.1 cm .Use differentials to estimate the maximum possible error in computing (i) the volume of the cube and (ii) the surface area of cube .

D Watch Video Solution

7. The radius of a circular disc is given as 24 cm with a maximum error in measurement of 0.02 cm . (i) Use differentials to estimate the maximum error in the calculated area of the disc. (ii) Compute the relative error.

- Watch Video Solution

8. If $\mathrm{u}=\log (\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z})$, prove that $\sum \sin 2 x \frac{\partial u}{\partial x}=2$
9. If $\mathrm{U}=(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x})$ then show that $U_{x}+U_{y}+U_{z}=0$

D Watch Video Solution

10. If $u=x^{2}+3 x y+y^{2}$ Verify $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$.

- Watch Video Solution

11. If $u=\frac{x}{y^{2}}-\frac{y}{x^{2}}$, show that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$.

D Watch Video Solution

12. Suppose that $z=y e^{x^{2}}$ where $\mathrm{x}=2 \mathrm{t}$ and $\mathrm{y}=1$ then find $\frac{d z}{d t}$
13. If $w=x+2 y+z^{2}$ and $x=\cos t, y=\sin t, z=t$ Find $\frac{d w}{d t}$.

- Watch Video Solution

14. If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{1}{\sqrt{x^{2}+y^{2}}}$ then show that $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=-f$

- Watch Video Solution

15. Using Euler's theorem , prove that
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$ if $u=\sin ^{-1} \cdot\left(\frac{x-y}{\sqrt{x}+\sqrt{y}}\right)$

- Watch Video Solution

16. If $u=x^{y}$ then is equal to
A. $y x^{y-1}$
B. $u \log x$
C. $u \log y$
D. $x y^{x-1}$

Answer: A

D Watch Video Solution

17. If $u=\sin ^{-1}\left(\frac{x^{4}+y^{4}}{x^{2}+y^{2}}\right)$ and $\mathrm{f}=\sin \mathrm{u}$ then f is a homogenous function of degree
A. 0
B. 1
C. 2
D. 4

D Watch Video Solution

18. If $u=\frac{1}{\sqrt{x^{2}+y^{2}}}$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is equal to
A. $\frac{1}{2} u$
B. u
C. $\frac{3}{2} u$
D. $-u$

Answer:

- Watch Video Solution

19. The curve $y^{2}(x-2)=x^{2}(1+x)$ has
A. an asymptote parallel to x - axis
B. an asymptote parallel to y - axis
C. asymptotes parallel to both axis
D. no asymptotes

Answer: A::B::C::D

- Watch Video Solution

20. If $x=r \cos \theta, y=r \sin \theta$, then $\frac{\partial r}{\partial x}=$
A. $\sec \theta$
B. $\sin \theta$
C. $\cos \theta$
D. $\operatorname{coses} \theta$

D Watch Video Solution

21. If $u=\log \left(\frac{x^{2}+y^{2}}{x y}\right)$ then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is.
A. 0
B. u
C. 2 u
D. u-1

Answer:

- Watch Video Solution

22. The percentage error in the 11th root of the number 28 is approximately \qquad times the percentage error in 28.
A. $\frac{1}{28}$
B. $\frac{1}{11}$
C. 11
D. 28

Answer: B

- Watch Video Solution

23. The curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ has
A. only one loop between $x=0$ and $x=a$
B. two loops between $x=0$ and $x=a$
C. two loops between $x=-a$ and $x=a$
D. no loop

Answer: A::B::D

- Watch Video Solution

24. An asymptote to the curve $y^{2}(a+2 x)=x^{2}(3 a-x)$ is
A. $x=3 a$
B. $x=-a / 2$
C. $x=a / 2$
D. $x=0$

Answer: A::B

25. In which region the curve $y^{2}(a+x)=x^{2}(3 a-x)$ does not lie ?
A. $x>0$
B. $0<x<3 a$
C. $x \leq-a$ and $x>3 a$
D. $-a<x<3 a$

Answer: A::C

- Watch Video Solution

26. If $\mathrm{u}=\mathrm{y} \sin \mathrm{x}$ then $\frac{\partial^{2} u}{\partial x \partial y}=$
A. $\cos x$
B. $\cos y$
C. $\sin x$
D. 0

Answer: C

Watch Video Solution
27. If $u=f\left(\frac{y}{x}\right)$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
A. 0
B. 1
C. 2 u
D. u

Answer:

28. The curve $9 y^{2}=x^{2}\left(4-x^{2}\right)$ is symmetrical about
A. y-axis
B. x-axis
C. $y=x$
D. both the axes

Answer: A::B

- Watch Video Solution

29. The curve $a y^{2}=x^{2}(3 a-x)$ cuts the y -axis at
A. $x=-3 a, x=0$
B. $x=0, x=3 a$
C. $x=0, x=a$
D. $x=0$

Answer:

- Watch Video Solution

