

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

DISCRETE MATHEMATICS

1. Examine the binary operation (closure property) of the following operation on the

respective sets (if is not , make it binary),

(i)a*b=a^2+3ab-
$$5b^2, \ \forall a, b arepsilon \mathbb{Z}$$

(ii)a*b =
$$\left(\frac{a-1}{b-1}\right), \ \forall a, b \in \mathbb{Q}$$

Watch Video Solution

2. Draw truth table for $-p\wedge q$

Watch Video Solution

3. For a group to be abelian what is the property that is to be satisfied?

6. In the set of real number R, an operation * is defined by $a * b = (a^2 + b)$. Then the value of (3 * 4) * 5 is

Watch Video Solution

7. Identify the valid statement from the

following: Go to your room!.

8. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two bollean matrices of the same type find $A \lor B$ and $A \land B$

9. In the set of real number R, an operation * is defined by $a * b = (a + b^2)$. Then the value of (3 * 4) * 5 is

11. How many rows are needed for following statement formulae? (i) $p \lor \neg t \land (p \lor \neg s)$ (ii) $((p \land q) \lor (\neg r \lor \neg s)) \land (\neg t \land v)$

12. Consider p
ightarrow q: If today is Monday , then 4+4=8.

Here the component statement p and q are given by, p: Today is Monday, q:4+4=8. The truth value of p
ightarrow q is T because the conclusion q is T. An important point is that $p \rightarrow q$ should not be treated by actually considering the meaning of p and q in English. Also it is not necessary that p should be realted to q at all.

13. Writes down the (i) conditional statement (ii) converse statement (iii) inverse statement and (iv) contrapositive statement for the two statement p and q given below. P: The number of printers is infinity .q : Ooty is in Kerala.

р	q	$\neg q$	$r{:} (p \ \overline{\vee} \ q)$	$s: (p \nabla \neg q)$	$r \wedge s$
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F
F	Т	F	Т	F	F
F	F	Т	F	Т	F.

Watch Video Solution

 $p
ightarrow q \equiv \
eg p ee q$

conditional:

$$p \leftrightarrow q \equiv (p
ightarrow q) \wedge (q
ightarrow p)$$

Watch Video Solution

1. Determine whether * is a binary operation

on the sets given below.

(i) a * b = a. |b| on R.

(ii) *a* * *b*= min (a,b) on A={1,2,3,4,5}

(iii) $(a * b) = a\sqrt{b}$ is binary on R.

3. Let
$$*$$
 be defined on R by
 $(a * b) = a + b + ab - 7$. Is $*$ binary on R? If
so, find $3 * \left(-\frac{7}{15}\right)$.

4. Let
$$A=ig\{a+\sqrt{5}b\!:\!a,b\in Zig\}$$
. Check

whether the usual multiplication is a binary operation on A.

Watch Video Solution

5. Define an operation * on Q as follows: $a \cdot b = \left(\frac{a+b}{2}\right), a, b \in Q.$ Examine the closure, communative, and associative properties satisfied by \cdot onQ.

6. Fill in the following table so that the binary

operation * on A={a,b,c} is commutative.

	*	a	b	С
ľ	a	6		1.
ľ	Ь	C	b	a
ľ	С	a	-	С

matrices of the same type. Find (i) $A \lor B$, (ii)

 $A \wedge B$, (iii) $(A \lor A) \wedge C$, (iv) $(A \land B) \lor C$.

8. (i) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R - \{0\} \right\}$ and let * be the matrix multiplication. Determine whether M is closed under *. If so, examinie the existence of identity, existence of inverse properties for the operation * on M.

9. Let A be $Q/\{1\}$. Define * on A by x * y=x+y-xy. Is

Watch Video Solution

* binary on A? If so, examine the commutative

and association properties satisfied by * on A.

Exercise 12 2

1. Let p: Jupiter is a planet and q: India is an island be any two simple statements. Give verbal sentence describing each of the following statements:

(i) ~*p*

(ii) $p \wedge {\scriptstyle{\sim}} q$

(iii) ~ $p \lor q$

3. Determine the truth value of each of the following statements.

(i) If 6+2=5, then the milk is white.

(ii) China is an Europe or $\sqrt{3}$ is an integer.

(iii) It is not true that 5+5=9 or Earth is a planet.

(iv) 11 is a prime number and all the sides of a rectangle are equal.

4. Which one of the following sentences is a proposition?

(i) 4+7=12

(ii) What are you doing?

(iii) $3^n \leq 81, n \in N$

(iv) Peacock is our national bird

(v) How tall this mountain is?

5. Write the converse, inverse, and contrapositive of each of the following implication.

(i) If x and y are numbers such that x=y, then $x^2 = y^2.$

(ii) If a quadrilateral is a square then it is a rectangle.

6. Construct the truth table for the following

statements.

$$-(p \wedge -q)$$

7. Verify whether the following compound propositions are tautologies or contradictions

or contingency

(i) $(p \wedge q) \wedge (p \lor q)$

8. Show that (i) ~ $(p \wedge q) \equiv$ ~ $p \vee$ ~q

(ii)
$${}^{\hspace*{-0.5mm}}{}(p
ightarrow q) \equiv p \wedge {}^{\hspace*{-0.5mm}}{}_{$$

Watch Video Solution

is a tautology or a contradiction without using

the truth table.

Watch Video Solution

14. Prove $p
ightarrow (q
ightarrow r) \equiv (p \land q)
ightarrow r$

without using truth table.

1. A binary operation on a set S is a function

from

A.
$$S o S$$

B. $(s imes S) o S$
C. $S o (S imes S)$
D. $(S imes S) o (S imes S)$

Watch Video Solution

2. Subtraction is not binary operation in

 $B.\mathbb{Z}$

C. ℕ

D. \mathbb{Q}

Answer: c

Watch Video Solution

3. Subtraction is not binary operation in

A. Substraction

B. Multiplication

C. Division

D. All the above

Answer: b

4. In the set R of real number * is defined as follows. Which one of the following is not a binary operation on R?

 $A. a * b = \min(a. b)$

 $\mathsf{B}.\,a*b=\max\,\left(a,b\right)$

$$\mathsf{C}. a * b = a$$

D.
$$a * b = a^b$$

Answer: d

5. The operation * defined by $a * b = \frac{ab}{7}$ is

not a binary operation on

A.
$$\mathbb{Q}^+$$

 $B.\mathbb{Z}$

 $\mathsf{C}.\,\mathbb{R}$

D. \mathbb{C}

Answer: b

Watch Video Solution

6. In the set Q define $a \odot b = a + b + ab$. For what value of $y, 3 \odot (y \odot 5) = 7$?

A.
$$y=rac{2}{3}$$

B.
$$y=rac{-2}{3}$$
C. $y=rac{-3}{2}$

D. y=4

Answer: b

Watch Video Solution

7. If
$$a * b = \sqrt{a^2 + b^2}$$
 on the real numbers then $*$ is

A. commutative but not associative

B. associative but not commutative

C. both commutative and associative

D. neither commutative nor associative

Answer: c

Watch Video Solution

8. Which one of the following statements has

the truth value T?

A. sin x is an even function.

9. Which one of the following statements has

truth value F?

- A. Chennai is in India or $\sqrt{2}$ is an integer B. Chennai is in India or $\sqrt{2}$ is an irrational number
- C. Chennai is in China or $\sqrt{2}$ is an integer
- D. Chennai is in China or $\sqrt{2}$ is an irrational

number

Answer: c

10. If a compound statement involves 3 simple statements, then the number of rows in the truth table is

A. 9

B. 8

C. 6

D. 3

Answer: b

11. Which one is the inverse of the statement $(p \lor q) \to (p \land q)$? A. $(p \land q)
ightarrow (p \lor q)$ $\mathsf{B.} \neg (p \lor q) \rightarrow (p \land q)$ $\mathsf{C}.\ (\neg p \lor \neg q) \to (\neg p \land \neg q)$ $\mathsf{D}.\ (\neg p \land \neg q) \to (\neg p \lor \neg q)$

Answer: d

12. Which one is the contrapositive of the statement $(p \lor q) \rightarrow r$? A. $\neg r
ightarrow (\neg p \land \neg q)$ $\mathsf{B.} \neg r \rightarrow (\neg p \lor q)$ $\mathsf{C}.\, r \to (p \wedge q)$ $\mathsf{D}.\,p
ightarrow (qee r)$

Watch Video Solution

Answer: a

13. The truth table for $(P \land q) \lor \neg q$ is given

below

p	9	$(p \land q) \lor (\neg q)$	
Т	Т	(<i>a</i>)	
Т	F	(b)	
F	Т	(C)	
F	F	(<i>d</i>)	

Which of the following is true?

A.
$$\begin{pmatrix} (A) & (B) & (C) & (D) \\ T & T & T & T \\ B. \begin{pmatrix} (A) & (B) & (C) & (D) \\ T & F & T & T \\ T & F & T & T \\ C. \begin{pmatrix} (A) & (B) & (C) & (D) \\ T & T & F & T \end{pmatrix}$$

D. $\begin{pmatrix} (A) & (B) & (C) & (D) \\ T & F & F & F \end{pmatrix}$

Answer: c

Watch Video Solution

14. In the last column of the truth table for $\sim(p \lor \sim q)$ the number of final outcomes of the truth value 'F' are

A. 1

B. 2

C. 3

D. 4

Answer: c

15. Which one of the following is incorrect? For

any two propostitions p and q, we have

A.
$$eg (p \lor q) \equiv \neg p \land \neg q$$

$$\mathsf{B.} \neg (p \land q) \equiv \neg p \lor \neg q$$

$$\mathsf{C}.\ \neg(p\lor q)\equiv\ \neg p\lor\ \neg q$$

$$\mathsf{D}. \ \neg (\ \neg p) \equiv p$$

Answer: c

> Watch Video Solution

16.

Which one of the following is correct for the

truth value of $(p \lor q)
ightarrow - p$?

A.
$$\begin{pmatrix} (A) & (B) & (C) & (D) \\ T & T & T & T \\ \end{pmatrix}$$

B. $\begin{pmatrix} (A) & (B) & (C) & (D) \\ F & T & T & T \\ \end{pmatrix}$
C. $\begin{pmatrix} (A) & (B) & (C) & (D) \\ F & F & T & T \\ \end{pmatrix}$
D. $\begin{pmatrix} (A) & (B) & (C) & (D) \\ T & T & T & F \\ \end{pmatrix}$

Answer: b

Watch Video Solution

17. The dual of ~ $(p \lor q) \lor [p \lor (p \land ~r)]$ is

A.
$$eg (p \land q) \land [p \lor (p \land \neg r)]$$

B. $(p \land q) \land [p \land (p \lor \neg r)]$
C. $eg (p \land q) \land [p \land (p \land r)]$
D. $eg (p \land q) \land [p \land (p \lor \neg r)]$

Answer: d

Watch Video Solution

18. The proposition $p \land (\ensuremath{\,^{\sim}} p \lor q)$ is

A. a tautology

B. a contraction

C. logically equivalent to $p \wedge q$

D. logically equivalent to $p \lor q$

Answer: c

Watch Video Solution

19. Determine the truth value of each of the

following statements:

(a) 4+2=5 and 6+3=9

(b) 3+2=5 and 6+1=7

(c) 4+5 =9 and 1+2=4

(d) 3+2=5 and 4+7=11

A. 4+2=5 and 6+3=9

B. 3+2=5 and 6+1=7

C. 4+5=9 and 1+2=4

D. 3+2=5 and 4+7=11

Answer: a

20. Which one of the following is not true?

A. Negation of a negation of a statement is

the statement itself.

- B. If the last column of the truth table contains only T then it is a tautology.
- C. If the last column of its truth table

contains only F then it is a contradiction

- D. If p and q are any two statements then
 - $p \leftrightarrow q$ is a tautology.

Additional Question Solved

1. In the multiplicative group of cube root of

unity the order of ω is.....

2. Show that $(Z_7 - \{[0]], .7)$ write to the binary operation multification module7 satisfies closure, associative, identify and inverse properties.

Watch Video Solution

3. In the multiplicative group of cube root of

unity the order of 1 is......

4. In the multiplicative group of cube root of

unity the order of group is......

O Watch Video Solution

5. Show that the set {[1].[3],[4],[5],[9]}under multiplication modulo 11 satisfies closure, associative, identity and inverse properties.

9. Show that $\neg (p \land q) \equiv ((\neg p) \lor (\neg q))$

10. Which of the following are statement?

(i) May God bless you

(ii) Rose is a flower

(iii) milk is white

(iv) 1 is a prime number

A. (i),(ii),(iii)

B. (i),(ii),(iv)

C. (i),(iii),(iv)

D. (ii),(iii),(iv)

Answer: d

11. If a compound statement involves 3 simple statements, then the number of rows in the truth table is

B. 6

C. 4

D. 2

Answer: a

Watch Video Solution

12. If truth value of p is T and q is F then which of the following are having the truth value T.(i) p V q (ii) $\sim p V q$ (iii) $p V (\sim q)$ (iv) $p \Lambda (\sim q)$ A. (i),(ii),(iii)

B. (i),(ii),(iv)

C. (i),(iii),(iv)

D. (ii),(iii),(iv)

Answer: c

Watch Video Solution

13. The number of row in the truth of $\sim [p \land (\sim q)]$ is.....

A. 2

B. 4

C. 6

D. 8

Answer: b

Watch Video Solution

14. Which condictional statement p ightarrow q is equivalent to :

A. $p \lor q$

 $\mathsf{B}.\, p \lor {\scriptstyle{\sim}} q$

C. ~ $p \lor q$

D. $p \wedge q$

Answer: c

Watch Video Solution

15. Which of the following is a tautology ?

A.
$$p \lor q$$

B. $p \wedge q$

 $\mathsf{C}.\, p \lor {\,{\scriptstyle{\sim}}} p$

D. $p \wedge {\scriptstyle{\sim}} p$

Answer: c

Watch Video Solution

16. In the set of integers with operation * defined by a * b = a + b - ab, the value of 3 * (4 * 5) is.....

A. 25

B. 15

C. 10

D. 5

Answer: a

17. In the multiplicative group of cube root of

unity the order of ω^2 is......

A. 4

B. 3

C. 2

D. 1

Answer: b

Watch Video Solution

18. The value of $\ _11[5] +_{11} [6]$ is.....

A. [0]

B. [1]

C. [2]

D. [3]

Answer: a

19. In the set of real number R, an operation *

is defined by $a * b = \sqrt{a^2 + b^2}.$ Then the

value of (3 * 4) * 5 is

20. The order of -i in the multiplicative group of 4th roots of unity is

A. 4

B. 3

C. 2

D. 1

Answer: a

