© 'doubtnut

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER - 1

Part I Choose The Correct Answer

1. $\mathrm{A}=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right], \mathrm{B}=\operatorname{adj} \mathrm{A}$ and $\mathrm{C}=3 \mathrm{~A}$, then $\frac{|a d j B|}{|C|}=$
A. $\frac{1}{3}$
B. $\frac{1}{9}$
C. $\frac{1}{4}$
D. 1
2. If the inverse of the matrix $\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]^{n}$ is $\frac{1}{11}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then the ascending order of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ is
A. a, b, c, d
B. d, b, c, a
C. c, a, b, d
D. b, a, c, d

Answer: B

- Watch Video Solution

3. The least value of n satisfying $\left[\frac{\sqrt{3}}{2}+\frac{i}{2}\right]^{n}=1$ is
A. 30
B. 24
C. 12
D. 18

Answer: C

- Watch Video Solution

4. The principal argument of $\frac{3}{-1+i}$ is
A. $-\frac{5 \pi}{6}$
B. $\frac{-2 \pi}{3}$
C. $\frac{-3 \pi}{4}$
D. $\frac{-\pi}{2}$

Answer: C

5. The polynomial $x^{3}+2 x+3$ has :
A. one negative and two imaginary
B. one positive and two imaginary roots
C. three real roots
D. no solution

Answer: A

- Watch Video Solution

6. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is
A. $[1,2]$
B. $[-1,1]$
C. $[0,1]$
D. $[-1,0]$

D Watch Video Solution

7. If $\mathrm{x}+\mathrm{y}=\mathrm{k}$ is a normal to the parabola $y^{2}=12 x$ then the value of k is
A. 3
B. -1
C. 1
D. 9

Answer: D

- Watch Video Solution

8. The circle passing through (1,-2) and touching the axis of x at $(3,0)$ passing through the point
A. $(-5,2)$
B. $(2,-5)$
C. $(5,-2)$
D. $(-2,5)$

Answer: C

- Watch Video Solution

9. The volume of the parallelepiped with its edges represented by the vectors $\hat{i}+\hat{j}, \hat{i}+2 \hat{j}, \hat{i}+\hat{j}+\pi \hat{k}$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{\pi}{4}$

Answer: C

10.

A. $(-5,5)$
B. $(-6,7)$
C. (5, -5)
D. $(6,-7)$

Answer: B

11. The function $\sin ^{4} x+\cos ^{4} x$ is increasing in the interval
A. $\left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]$
B. $\left[\frac{\pi}{2}, \frac{5 \pi}{8}\right]$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
D. $\left[0, \frac{\pi}{4}\right]$

Answer: C

- Watch Video Solution

12. The curve $y=a x^{4}+b x^{2}$ with $a b>0$
A. has no horizontal tangent
B. is concave up
C. is concave down
D. has no points of inflection

Answer: D

13. If $u=(x-y)^{2}$, then $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}$ is
A. 1
B. -1
C. 0
D. 2

Answer: C

- Watch Video Solution

14. The value of $\int_{0}^{\pi} \frac{d x}{1+5^{\cos x}}$ is:
A. $\frac{\pi}{2}$
B. π
C. $\frac{3 \pi}{2}$
D. 2π

D Watch Video Solution

15. The volume of solid of revolution of the region bounded by $y^{2}=x(a-x)$ about x-axis is
A. πa^{3}
B. $\frac{\pi a^{3}}{4}$
C. $\frac{\pi a^{3}}{5}$
D. $\frac{\pi a^{3}}{6}$

Answer: D

D Watch Video Solution

16. If m, n are the order and degree of the differential equation $\left[\frac{d^{4} y}{d x^{4}}+\frac{d^{2} y}{d x^{2}}\right]^{\frac{1}{2}}=a \frac{d^{2} y}{d x^{2}}$ respectively, then the value of $4 m-n$ is
A. 15
B. 12
C. 14
D. 13

Answer: A

- Watch Video Solution

17. The solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$ is
A. $x \varphi\left(\frac{y}{x}\right)=k$
B. $\varphi\left(\frac{y}{x}\right)=k x$
C. $y \varphi\left(\frac{y}{x}\right)=k$
D. $\varphi\left(\frac{y}{x}\right)=k x$
18. A random variable X has the following distribution.

x	1	2	3	4
$p(X=x)$	c	$2 c$	$3 c$	$4 c$

then the value of c is \qquad
A. 0.1
B. 0.2
C. 0.3
D. 0.4

Answer: A

- Watch Video Solution

19. If $P\{X=0\}=1-P\{X=1\}$. If $E\{X\}=3 \operatorname{Var}(X)$, then $P\{X=0\}$ is
A. $\frac{2}{3}$
B. $\frac{2}{5}$
C. $\frac{1}{3}$
D. $\frac{1}{5}$

Answer: C

- Watch Video Solution

20. Which one is the contrapositive of the statement $(p \vee q) \rightarrow r$?
A. $\neg r \rightarrow(\neg p \wedge \neg q)$
B. $\neg r \rightarrow(p \vee q)$
C. $r \rightarrow(p \wedge q)$
D. $p \rightarrow(q \vee r)$

Answer: A

1. Solve the following system of linear equations by Cramer's rule $2 x-y=$ $3, x+2 y=-1$.

- Watch Video Solution

2. If z_{1}, z_{2} and z_{3} are complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|z_{1}+z_{2}+z_{3}\right|=1$, find the value of
$\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|$.

- Watch Video Solution

3. Find the value of $\sin \left(\frac{\pi}{3}+\cos ^{-1}(-1)\right)$

- Watch Video Solution

4. Find the equation of the parabola with vertex $(-1,-2)$, axis parallel to y axis and passing through $(3,6)$.

- Watch Video Solution

5. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\widehat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}, \quad$ find the angle between \vec{a} and \vec{c}.

- Watch Video Solution

6. If the mass $m(x)$ (in kilograms) of a thin rod of length x (in metres) is given by, $m(x)=\sqrt{3 x}$ then what is the rate of change of mass with respect to the length when it is $x=27$ meters.

- Watch Video Solution

7. Evaluate : $\int_{0}^{\infty} e^{-a x} x^{n} d x$, where $a>0$.
8. Show that $y=a x+\frac{b}{x}, x \neq 0$ is a solution of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.

- Watch Video Solution

9. Find the mean of a random variable X, whose probability density function is $f(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$.

- Watch Video Solution

10. Let * be a binary operation on set Q of rational numbers defined as $a * b=\frac{a b}{8}$. Write the identity for $*$, If any.

- Watch Video Solution

1. Find the inverse of $\left[\begin{array}{ll}2 & -1 \\ 5 & -2\end{array}\right]$ by Gauss Jorden method.

- Watch Video Solution

2. If $\omega \neq 1$ is a cube root of unity, show that the roots of the equation $(z-1)^{3}+8=0$ are $-1,1-2 \omega, 1-2 \omega^{2}$.

- Watch Video Solution

3. Find all real numbers satisfying $4^{x}-3\left(2^{x+2}\right)+2^{5}=0$

- Watch Video Solution

4. Find the centre, foci and eccentricity of the hyperbola $12 x^{2}-4 y^{2}-24 x+32 y-127=0$
5. Find the image of the point whose position vector is $\hat{i}+2 \hat{j}+3 \hat{k}$ in the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}+4 \hat{k})=38$.

- Watch Video Solution

6. Evaluate : $\lim x \log x$.

$$
x \rightarrow 0^{+}
$$

- Watch Video Solution

7. Find a linear approximation for the following functions at the indicated points.

$$
f(x)=x^{3}-5 x+12, x_{0}=2
$$

Watch Video Solution

8. By using the properties of definite integrals, evaluate $\int_{0}^{3}|x-1| d x$
9. Solve : $\frac{d y}{d x}+2 y \cot x=3 x^{2} \operatorname{cosec}^{2} x$.

- Watch Video Solution

10. A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, find the probability of getting exactly two heads.

- Watch Video Solution

Part Iv Answer The Questions

1. By using Gaussian elimination method, balance the chemical reaction equation:
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$.
2. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $\arg \left(\frac{z-i}{z+2}\right)=\frac{\pi}{4}$. Show that $x^{2}+y^{2}+3 x-3 y+2=0$.

- Watch Video Solution

3. Solve the equation :
$3 x^{4}-16 x^{3}+26 x^{2}-16 x+3=0$

- Watch Video Solution

4. Solve : $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$

- Watch Video Solution

5. A rod of length 1.2 m moves with its ends always touching the coordinate axes. The locus of a point Pon the rod, which is 0.3 m from the
end in contact with x-axis is an ellipse. Find the eccentricity.

- Watch Video Solution

6. Find the non-parametric and Cartesian equations of the plane passing through the point $(4,2,4)$ and is perpendicular to the planes $2 x+5 y+4 z$ $+1=0$ and $4 x+7 y+6 z+2=0$.

- Watch Video Solution

7. A steel plant is capable of producing x tonnes per day of a law-grade steel and y tonnes per day of a hight-grade steel, where $y=\frac{40-5 x}{10-x}$. If the fixed market price of low-grade steel is half that of high-grade steel, then what should be optimal productions in law-grade steel and highgrade steel in order to have maximum receipts.

- Watch Video Solution

8. Let $\quad z(x, y)=x e^{y}+y e^{-x}, x=e^{-t}, y=s t^{2}, s, t \in \mathbb{R}$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

- Watch Video Solution

9. Find the area of the region bounded between the parabola $x^{2}=y$ and the curve $\mathrm{y}=|\mathrm{x}|$.

- Watch Video Solution

10. Water at temperature $100^{\circ} \mathrm{C}$ cools in 10 minutes to $80^{\circ} \mathrm{C}$ in a room temperature of $25^{\circ} \mathrm{C}$.

Find
(i) The temperature of water after 20 minutes
(ii) The time when the temperature is $40^{\circ} \mathrm{C}$

$$
\left[\log _{e} \frac{11}{15}=-0.3101, \log _{e} 5=1.6094\right]
$$

11. Suppose a discrete random variable can only take the values 0,1 , and 2 . The probability mass function is defined by
$f(x)= \begin{cases}\frac{x^{2}+1}{k}, & \text { for } \mathrm{x}=0,1,2 \\ 0 & \text { otherwise }\end{cases}$
Find (i) the value of k (ii) cumculative distribution function (iii) $P(X \geq 1)$.

- Watch Video Solution

12. Using truth table check whether the statements $\sim(p \vee q) \vee(\sim p \wedge q)$ and $\sim p$ are logically equivalent.

- Watch Video Solution

13. Prove by vector method that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.

- Watch Video Solution

14. Find the equations of tangent and normal to the curve $y^{2}-4 x-2 y+5=0$ at the point where it cuts the x -axis.
