

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER - 14 (UNSOLVED)

Part I 1 Choose The Correct Answer Answer All The Questions

1. If adj A =
$$\begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$$
 and adj B = $\begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then adj (AB) is

Answer: B

2. In the system of equations with 3 unknowns, if $\Delta=0$ and one of $\Delta_x, \Delta_y, {
m of}\Delta_z$ is non zero then the system is

A. consistent

B. inconsistent

C. consistent and the system reduces or two

equations

D. consistent and the system reduces to a single

equation

Answer: B

3. The principal argument of the complex number

$$rac{\left(1+i\sqrt{3}
ight)^2}{4i\left(1-i\sqrt{3}
ight)}$$
 is

A.
$$\frac{2\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\frac{5\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

4. Which of the following is incorrect?

A.
$$|z_1+z_2| \leq |z_1|+|z_2|$$

$$\mathsf{B.} |z_1 - z_2| \leq |z_1| + |z_2|$$

 $\mathsf{C}.\, |z_1-z_2| \geq |z_1|-|z_2|$

D.
$$|z_1 + z_2| \ge |z_1| + |z_2|$$

Answer: D

5. The number of positive zeros of the polynomial

$$\sum\limits_{j=0}^{n}{}^{n}C_{r}{(\,-1)}^{r}x^{r}$$
 is

A. 0

B.n

 $\mathsf{C.} < n$

D. r

Answer: B

6.
$$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$$
 is equal to
A. $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$
B. $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$
C. $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$
D. $\tan^{-1}\left(\frac{1}{2}\right)$

Answer: D

7. If x + y = k is a normal to the parabola $y^2 = 12x$ then the value of k is

A. 3

 $\mathsf{B.}-1$

C. 1

D. 9

Answer: D

line passing through the points

- A. (0, 6,-1) and (1, -2, -1)
- B. (0,6, -1) and (-1, 4,-2)
- C. (1, -2, -1) and (1,4,-2)
- D. (1, -2, -1) and (0, -6, 1)

Answer: C

O Watch Video Solution

9. The value of
$$\left[\hat{i} - \hat{j}, \hat{j} - \hat{k}, \hat{k} - \hat{i}
ight]$$
 is :

A. 0

B. 1

C. 2

D. 3

Answer: A

10. A stone is thrown up vertically. The height it reaches at time t seconds is given by $x = 80t - 16t^2$. The stone reaches the maximum height in time t seconds is given by B. 2.5

C. 3

D. 3

Answer: B

11. The approximate change in the volume V of a cube

of side x metres caused by increasing the side by 1% is

A. 0.3 xdm m^3

 $\mathsf{B}.\,0.03xm^3$

 $\mathsf{C.}\, 0.03 x^2 m^3$

$\mathsf{D}.\, 0.03 x^3 m^3$

Answer: D

Watch Video Solution

12. The differential of y if
$$\mathsf{y}~=\sqrt{x^4+x^2-1}$$

A.
$$rac{1}{2} ig(4x^3+2xig)^{rac{1}{2}} dx$$

B. $rac{1}{2} ig(x^4+x^2+1ig)^{-rac{1}{2}} ig(4x^3+2xig) dx$
C. $rac{1}{2} ig(4x^3+2xig)^{rac{1}{2}}$
D. $rac{1}{2} ig(x^4+x^2+1ig)^{rac{1}{2}} ig(4x^3+2xig)$

Answer: B

13. If
$$f(x) = \int_1^x \frac{e^{\sin x}}{u} du, x > 1$$
 and

$$\int_{1}^{3}rac{e^{\sin x}}{x}dx=rac{1}{2}[f(a)-f(1)]$$
, then one of the

possible value of a is

A. 3

B. 6

C. 9

D. 5

Answer: C

14.
$$\int_a^b f(x) dx =$$

A.
$$2\int_{0}^{a}f(x)dx$$

B. $\int_{a}^{b}f(a-x)dx$
C. $\int_{a}^{b}f(b-x)dx$
D. $\int_{a}^{b}f(a+b-x)dx$

Answer: D

Watch Video Solution

15. If $\sin x$ is the integrating factor of the linear differential equation $\frac{dy}{dx} + Py = Q$, then P is

A. log sin x

B. cos x

C. tan x

D. cot x

Answer: D

16. The general solution of the differential equation

$$\log\!\left(rac{dy}{dx}
ight) = x+y$$
 is

A.
$$e^x + e^y = c$$

 $\mathsf{B.}\,e^x + e^{-y} = c$

$$\mathsf{C}.\,e^{-x}+e^y=c$$

D.
$$e^{-x} + e^{-y} = c$$

Answer: B

Watch Video Solution

17. Let X have a Bernoulli distribution with mean 0.4, then the variance of (2X-3) is

A. 0.24

B. 0.48

C. 0.6

D. 0.96

Answer: D

18. Which of the following is a discrete random variable?

I. The number of cars crossing a particular signal in a day.

II. The number of customers in a queue to buy train tickets at a moment.

III. The time taken to complete a telephone call.

A. I and II

B. II only

C. III only

D. II and III

Answer: A

Watch Video Solution

19. Which one of the following is a binary operation on

Ν?

A. Subtraction

B. Multiplication

C. Division

D. All the above

Answer: B

20. Which one is the contrapositive of the statement $(p \wedge q) o r?$

A. ~r
ightarrow (~p
ightarrow ~q)

$$\mathsf{B}.-r \to (\,-p \wedge q)$$

$$\mathsf{C}.\, r \to (p \wedge q)$$

D.
$$p
ightarrow (q \lor r)$$

Answer: A

Part li li Answer Any Seven Questions Question No 30 Is Compulsory

2. Formulate into a mathematical problem to find a number such that when its cube root is added to it, the result is 6.

3. Find the value of
$$\tan\left[\frac{1}{2}\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \frac{1}{2}\cos^{-1}\left(\frac{1-a^2}{1+a^2}\right)\right]$$
Watch Video Solution

4. Obtain the equation of the circle for which (3,4) and (

2,-7) are the ends of a diameter.

• Watch Video Solution
5. Find the angle between the following lines

$$\vec{r} = 3\vec{i} + 2\vec{j} - \vec{k} + t\left(\vec{i} + 2\vec{j} + 2\vec{k}\right)$$
 and

$$\overrightarrow{r} = 5\overrightarrow{j} + 2\overrightarrow{k} + s\left(3\overrightarrow{i} + 2\overrightarrow{j} + 6\overrightarrow{k}
ight)$$

7. Find value of m so that the function $y = e^{mx}$ is a solution of the given differential equation.

$$y$$
'' $-5y$ ' $+6y=0$

8. Compute P(X = K) for the binomial distribution

B(n,p) where

$$n=9,p=rac{1}{2},k=7$$

Watch Video Solution

9. Verify the

Associative property

10. Simplify :
$$i^{59}+rac{1}{i^{59}}$$
 .

Part Iii Iii Answer Any Seven Questions Question No 40 Is Compulsory

1. If p and q are the roots of the equation

$$lx^2 + nx + n = 0$$
, show that
 $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0.$
Watch Video Solution

2. Find the domain of the following

$$f(x)=\sin^{-1}igg(rac{x^2+1}{2x}igg)$$

3. Find the vertex, focus, directrix, and length of the latus rectum of the parabola $x^2 - 4x - 5y - 1 = 0$

4. If the area of the parallelogram having diagonals

$$\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}, \vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$$
 is :
Watch Video Solution

5. A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:

(i) change in the volume

(ii) change in the surface area

8. If μ and σ^2 are the mean and variance of the discrete random variable X, and E(X+3) = 10 and $E(X+3)^2 = 116$, find μ and σ^2 .

Watch Video Solution

9. Establish the equivalence property: $p
ightarrow q \equiv \
eg p \lor q$

• Watch Video Solution
10. Evaluate:
$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$$

• Watch Video Solution

1. Find the condition on a, b and c so that the following system of linear equations has one parameter family of solutions: x + y + z = a, x + 2y + 3z = b, 3x + 5y + 7z = c.

2. Find the equation of the tangents to the curve $y = 1 + x^3$ for which the tangent is orthogonal with the line x + 12y = 12.

3. Find the equations of tangents to the hyperbola $\frac{x^2}{16} - \frac{y^2}{64} = 1$ which are parallel to 10x - 3y + 9 = 0

Watch Video Solution

4. Solve the system: x + y - 2z = 0, 2x - 3y + z = 0, 3x - 7y + z = 0

10z = 0, 6x - 9y + 10z = 0.

Watch Video Solution

5. Find the vector equation in parametric form and Cartesian equations of a straight passing through the

points (-5, 7, -4) and (13,-5,2). Find the point where the

straight line crosses the xy - plane.

6. The parabolic communication antenna has a focus at

2 m distance from the vertex of the antenna. Find the

width of the antenna 3 m from the vertex.

7. If the imaginary part of $\frac{2z+1}{iz+1}$ is -2, then show that the locus of the point representing z in the argand plane is straight line.

8. Solve:
$$x \frac{dy}{dx} + 2y - x^2 \log x = 0$$

Watch Video Solution

9. Let
$$U(x,y,z)=xyz, x=e^{-t}, y=e^{-t}\cos t, z=\sin t, t\in R$$
. Find $\displaystyle rac{dU}{dt}.$

10. Solve :
$$12x^4 - 56x^3 + 89x^2 - 56x + 12 = 0$$

11. Show that $(Z_7 - \{[0]], .7)$ write to the binary operation multification module7 satisfies closure, associative, identify and inverse properties.

12. Find the area of the region bounded by the parabola

$$y=x^2+2$$
 , x-axis, x = 0 and x = 3.

13. Simplify:
$$\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right)$$
.

14. In a binomial distribution consisting of 5 independent trials the probability of 1 and 2 sucesses are 0.4096 and 0.2048 respectively. Find the mean and variance of the distribution .

