©゙" doubtnut

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER - 16

Part I

1. If $P=\left|\begin{array}{ccc}1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2\end{array}\right|$ is the adjoint of 3×3 matrix A and $|\mathrm{A}|=4$, then x is
A. 15
B. 12
C. 14
D. 11
2. If $\mathrm{P}=\left|\begin{array}{ccc}1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2\end{array}\right|$ is the adjoint of 3×3 matrix A and $|\mathrm{A}|=4$, then x is
A. consistent and has infinitely many solution
B. consistent and has a unique solution
C. consistent
D. inconsistent

Answer:

- Watch Video Solution

3. The principal argument of $\frac{3}{-1+i}$ is
A. $-\frac{5 \pi}{6}$
B. $\frac{-2 \pi}{3}$
C. $\frac{-3 \pi}{4}$
D. $\frac{-\pi}{2}$

Answer:

- Watch Video Solution

4. If $\mathrm{z}=\frac{(\sqrt{3}+i)^{3}(3 i+4)^{2}}{(8+6 i)^{2}}$, then $|\mathrm{z}|$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer:

5. If find g are polynomials of derrees m and n respectively, and if $h(x)=$ $\left(f^{\circ} g\right)(\mathrm{x})$, then the degree of h is
A. $m n$
B. $m+n$
C. m^{n}
D. n^{m}

Answer:

- Watch Video Solution

6. The equation $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ has
A. no solution
B. unique solution
C. two solutions
D. infinite number of solutions

Answer:

- Watch Video Solution

7. $\sin ^{-1}\left(3 \frac{x}{2}\right)+\cos ^{-1}\left(3 \frac{x}{2}\right)=$
A. $\frac{3 \pi}{2}$
B. $6 x$
C. 3 x
D. $\frac{\pi}{2}$

Answer:

Watch Video Solution

8. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}$ parallel to the straight line $2 x-y=1$. One of the points of contact of tangents on the hyperbola is
A. $\left(\frac{9}{2 \sqrt{2}} \frac{1}{\sqrt{2}}\right)$
B. $\left(\frac{-9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
C. $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
D. $(3 \sqrt{3},-2 \sqrt{2})$

Answer:

- Watch Video Solution

9. The vertices of the ellipse $16 x^{2}+25 y^{2}=400$ are
A. $(\pm 3,0)$
B. $(0, \pm 3)$
C. $(0, \pm 5)$
D. $(\pm 5,0)$

Answer:

10. If the volume of the parallelepiped with $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c}),(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times(\vec{a}$ as coterminous edges is,
A. 8 cubic units
B. 512 cubic units
C. 64 cubic units
D. 24 cubic units

Answer:

- Watch Video Solution

$\vec{d}=\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$, then
A. \vec{u} is a unit vector
B. $\vec{u}=\vec{a}+\vec{b}+\vec{c}$
C. $\vec{u}=\overrightarrow{0}$
D. $\vec{u} \neq \overrightarrow{0}$

Answer:

- Watch Video Solution

12. The maximum value of the functions $x^{2} e^{-2 x}, x>0$ is
A. $\frac{1}{e}$
B. $\frac{1}{2 e}$
C. $\frac{1}{e^{2}}$
D. $\frac{4}{e^{4}}$

Answer:

- Watch Video Solution

13. If $u(x, y)=x^{2}+3 x y+y-2019$, then $\left(\frac{\partial u}{\partial x}\right)_{4-5}$ is equal to
A. -4
B. -3
C. -7
D. 13

Answer:

- Watch Video Solution

14. The differential on y of the function $y=x^{\frac{1}{4}}$ is
A. $\frac{1}{4} x^{\frac{3}{4}}$
B. $\frac{1}{4} x^{-\frac{3}{4}} \mathrm{~d} \mathrm{x}$
C. $x^{\frac{3}{4}} \mathrm{dx}$,
D. 0

Answer:

- Watch Video Solution

15. The curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$ is symmetrical about
A. x-axis only
B. y-axis only
C. both the axix
D. both the axis and origin

Answer:

16. The value of $\int_{0}^{1}\left(\sin ^{-1} x\right)^{2} d x$ is
A. $\frac{\pi^{2}}{4}-1$
B. $\frac{\pi^{2}}{4}+2$
C. $\frac{\pi^{2}}{4}+1$
D. $\frac{\pi^{2}}{4}-2$

Answer:

- Watch Video Solution

17. The integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is x , then $P(x)$
A. x
B. $\frac{x^{2}}{2}$
C. $\frac{1}{x}$
D. $\frac{1}{x^{2}}$

Answer:

- Watch Video Solution

18. The number of arbitrary constants in the general solutions of order n and $n+1$ are respectively
A. $n-1, n$
B. $n, n+1$
C. $n+1, n+2$
D. $n+1, n$

Answer:
19. Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, $42,36,34$, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. Let Y denote the number of students on that bus. Then $E[X]$ and $E[Y]$ respectively are
A. 50,40
B. 40,50
C. $40.75,40$
D. 41,41

Answer:

- Watch Video Solution

20. Which one is the inverse of the statement $(p \vee q) \rightarrow(p \wedge q)$?
A. $(p \wedge q) \rightarrow(p \vee q)$
B. $-(p \vee q) \rightarrow(p \wedge q)$
C. $(-p \vee-q) \rightarrow(-p \wedge-q)$
D. $(-p \wedge-q) \rightarrow(-p \vee-q)$

Answer:

- Watch Video Solution

Part li

1. By matrix multiplication from that $M=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
2. If ω is a complex cube root of unity, then $\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{c+a \omega+b \omega^{2}}{a+b \omega+c \omega^{2}}+\frac{b+c \omega+a \omega^{2}}{b+c \omega+a \omega^{5}}=$

- Watch Video Solution

3. Formulate into a mathematical problem to find a number such that when its cube root is added to it, the result is 6 .

- Watch Video Solution

4. Find the length of Latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

- Watch Video Solution

5. Find the acute angle between the planes $\vec{r} \cdot(2 \hat{\imath}+2 \hat{j}+2 \hat{k})=11$ and $4 x-2 y+2 z=15$
6. Obtain the Maclaurin's series expansion for the function $e^{2 x}$

- Watch Video Solution

7. Let us assume that the the the shape of a soap bubble is a sphere. Use linear approximation to approximate the increase in the surface area of a soap bubble as its radius increases from 5 cm to 5.2 cm also calculate the percentage error.

- Watch Video Solution

8. Evaluate the following :
$\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{5} \theta d \theta$

- Watch Video Solution

9. Show what $y=a e^{-3 x}+b$, where a and b are arbitary constants, is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}=0$

- Watch Video Solution

10. Find the value of $\sec ^{-1}\left(-\frac{2 \sqrt{3}}{3}\right)$

- Watch Video Solution

Part lif

1. Find the inverse of the non-singular matrix $A=\left[\begin{array}{cc}0 & 5 \\ -1 & 6\end{array}\right]$, by Gauss Jordan method.
2. The complex numbers u, v and w are related by $\frac{1}{u}=\frac{1}{v}+\frac{1}{w}$. If $\mathrm{v}=3$ $-4 i$ and $w=4+3 i$, find u in rectangular form.

- Watch Video Solution

3. If the root of $x^{3}+p x^{2}+q x+r=0$ are in H.P. prove that $9 p q r=27 r^{2}+2 q^{3}$. Assume $p, q, r \neq 0$

- Watch Video Solution

4. Find the value of
$\cot ^{-1}(1)+\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)-\sec ^{-1}(-\sqrt{2})$

- Watch Video Solution

5. Find the absolute maximum and absolute minimum values of f on the given interval $f(x)=\frac{x}{x+1}[1,2]$

- Watch Video Solution

6. The time T , taken for a complete oscillation of a single pendulam with
length I , is given by the equation $T=2 \pi \sqrt{\frac{l}{g}}$, where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of I.

- Watch Video Solution

7. Solve $e^{x} \sqrt{1-y^{2}} d x+\frac{y}{x} d y=0$

- Watch Video Solution

8. An urn contains 5 mangoes and 4 apples. Three fruits are taken at random. If the number of apples taken is a random variable, then find the values of the random variable and number of points in its inverse images.
9. Show that $[\neg q \wedge p] \wedge q$ is a contradiction.

- Watch Video Solution

10. Evaluate the following :
$\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{5} \theta d \theta$

- Watch Video Solution

Part Iv

1.

(a)

Show
that
the
equations
$x+y+z=6, x+2 y+3 z=14, x+4 y+7 z=30$ are consistent and solve them.
2. Verify (i) closure property (ii) commutative property (iii) associate property (iv) existence of identity and (v) existence of inverse for the opertion $\times 11$ on a subset $A=\{1,3,4,5,9\}$ of the set of the remainders $\{0,1,2,3,4,5,6,7,8,9,10\}$.

- Watch Video Solution

3. Prove that $(1+i)^{n}+(1-i)^{n}=2^{\frac{n+2}{2}} \frac{\cos (n \pi)}{4}$

- Watch Video Solution

4. Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points $(2,2,1),(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$.

- Watch Video Solution

5. Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5}-\sqrt{3}$ as a root.

- Watch Video Solution

6. If the probability mass function $f(x)$ of a random variable X is

x	1	2	3	4
$f(x)$	$\frac{1}{12}$	$\frac{5}{12}$	$\frac{5}{12}$	$\frac{1}{12}$

find (i) its cumulative distribution hence find (ii) $\mathrm{P}(\mathrm{X} \leq 3)$ and, (iii) $P(X \geq 2)$

- Watch Video Solution

7. Prove that $: \cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} x\right)\right\}\right]=\sqrt{\frac{x^{2}+1}{x^{2}+2}}$

- Watch Video Solution

8. $\left(x^{2}+y^{2}\right) d y=x y d x$. It is given that $y(1)=1$ and $y\left(x_{0}\right)=e$. Find the vale of x_{0}.

- Watch Video Solution

9. At a water fountain, water attains a maximum height of 4 m at horizontal distance of 0.5 m from its origin. If the path of water is a parabola, find the height of water at a horizontal distance of 0.75 m from the point or origin.

- Watch Video Solution

10. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $\mathrm{x}=0, \mathrm{x}=4$ and $\mathrm{y}=0$ into three equal parts.

- Watch Video Solution

11. If $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}, \vec{b}=2 \vec{i}+5 \vec{k}, \vec{c}=\vec{j}-3 \vec{k}$, verify that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

- Watch Video Solution

12. Prove that the line $5 x+12 y=9$ touches the hyperbola $x^{2}-9 y^{2}=9$ and find the point of contact.

- Watch Video Solution

13. Prove that the ellipse $x^{2}+4 y^{2}=8$ and the hyperbola $x^{2}-2 y^{2}=4$ intersect orthogonally .

- Watch Video Solution

14. Let $\mathrm{W}(\mathrm{x}, \mathrm{y}, \mathrm{z})=x^{2}-x y+3 \sin z, x, y, z \in R$, Find the linear approximation at (2,-1,0).
© Watch Video Solution
