©゙doubtnut

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER - 19 (UNSOLVED)

Part I I Choose The Correct Answer Answer All The Questions

1. If
A
$\left[\begin{array}{rrr}3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
then the value of a_{23} is
A. 0
B. -2
C. -3
D. -1

Answer: D

Watch Video Solution

2. If $z=x+i y$ is a complex number such that $|z+2|=$
|z-2|, then the locus of z is

A. real axis

B. imaginary axis
C. ellipse
D. circle

Answer: B

- Watch Video Solution

3. The values of $={ }^{-}$is

$$
z+z
$$

A. $2 \operatorname{Re}(z)$
B. $\operatorname{Re}(z)$
C. $\operatorname{Im}(z)$
D. $2 \operatorname{Im}(z)$

Answer: A

D View Text Solution

4. The polynomial $x^{3}+2 x+3$ has :
A. one negative and two imaginary zeros
B. one positive and two imaginary zeros
C. three real zeros
D. no zeros

- Watch Video Solution

5. $\sin ^{-1}\left[\tan \frac{\pi}{4}\right]-\sin ^{-1}\left[\sqrt{\frac{3}{x}}\right]=\frac{\pi}{6}$. Then x is a root of the equation

$$
\begin{aligned}
& \text { A. } x^{2}-x-6=0 \\
& \text { B. } x^{2}-x-12=0 \\
& \text { С. } x^{2}+x-12=0 \\
& \text { D. } x^{2}+x-6=0
\end{aligned}
$$

Answer: B
6. $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=.$.

$$
\begin{aligned}
& \text { A. } \sin ^{-1} \frac{1}{\sqrt{2}} \\
& \text { B. } \sin ^{-1}\left(\frac{1}{2}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{1}{2}\right) \\
& \text { D. } \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

Answer: A

- Watch Video Solution

7. Consider an ellispe whose centre is of the origin and its major axis is along x-axis. If its eccentiricity is 3 $\frac{3}{5}$ and the distance between its foci is 6 , then the area of the quadrilateral insricbed in the ellipse with diagonals as major and minor axis of the ellipse is
A. 8
B. 32
C. 80
D. 40

Answer: D

8. The eccentricity of ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ is
A. $\frac{1}{5}$
B. $\frac{3}{5}$
C. $\frac{2}{5}$
D. $\frac{4}{5}$

Answer: D
9. If the distance of the point $(1,1,1)$ from the origin is half of its distance from the plane $x+y+z+k=0$, then the value of k are
A. ± 3
B. ± 6
C. $-3,9$
D. $3,-9$

Answer: D
10. The position of a particle moving along a horizontal line of any time t is given by $s(t)=3 t^{2}-2 t-8$. The time at which the particle is at rest is
A. $t=0$
B. $t=\frac{1}{3}$
C. $t=1$
D. $t=3$

Answer: B
11. The function $f(x)=x^{2}$ has
A. a maximum value at $x=0$
B. minimum value at $x=0$
C. finite no. of maximum values
D. infinite no. of maximum values

Answer: B

- Watch Video Solution

12. The percentage error of fifth root of 31 is approximately how many times the percentage error
in 31 ?
A. $\frac{1}{31}$
B. $\frac{1}{5}$
C. 5
D. 31

Answer: B

- Watch Video Solution

13. The differential of y if $y=x^{5}$ is,
A. $5 x^{4}$
B. $5 x^{4} d x$
C. $5 x^{5} d x$
D. $5 x^{5}$

Answer: B

- Watch Video Solution

14. The value of $\int_{0}^{1}\left(\sin ^{-1} x\right)^{2} d x$ is
A. $\frac{\pi^{2}}{4}-1$
B. $\frac{\pi^{2}}{4}+2$
C. $\frac{\pi^{2}}{4}+1$
D. $\frac{\pi^{2}}{4}-2$

Answer: D

- Watch Video Solution

15. If $f(x)$ is an odd function then $\int_{-a}^{a} f(x) d x$ is
A. $2 \int_{0}^{a} f(x) d x$
B. $\int_{0}^{a} f(x) d x$
C. 0
D. $\int_{0}^{a} f(a-x) d x$

- Watch Video Solution

16. The solution of the differential equation

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)} \text { is }
$$

A. $x \phi\left(\frac{y}{x}\right)=k$
B. $\phi\left(\frac{y}{x}\right)=k x$
C. $y \phi\left(\frac{y}{x}\right)=k$
D. $\phi\left(\frac{y}{x}\right)=k y$
17. The number of arbitrary constants in the particular solution of a differential equation of third order is
A. 3
B. 2
C. 1
D. 0

Answer: D
18. A random variable X has binominal distribution with $\mathrm{n}=25$ and $\mathrm{p}=0.8$ then standard deviation of X is
A. 6
B. 4
C. 3
D. 2

Answer: D
(D) Watch Video Solution
19. If $f(x)=\left\{\begin{array}{ll}2 x & 0 \leq x \leq a \\ 0 & \text { otherwise }\end{array}\right.$ is a probability density function of a random variable, then the value of a is
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

20. If a compound statement involves 3 simple statements, then the number of rows in the truth table is
A. 9
B. 8
C. 6
D. 3

Answer: B

Part li li Answer Any Seven Questions Questions No 30 Is Compulsory

1. Test for consistency and if possible solve the following system of equations by rank method.
$2 x+2 y+z=5, x-y+z=1,3 x+y+2 z=4$

(D) Watch Video Solution

2. Given $z_{1}=4-7 i$ and $z_{2}=5+6 i$ find the
additive and multiplicative inverse of $z_{1}+z_{2}$ and $z_{1}-z_{2}$.
3. Find the maximum possible number of real roots of the equation. $x^{5}-6 x^{2}-4 x+5=0$.

- Watch Video Solution

4. Find the value of $\sin ^{-1}\left(\frac{5 \pi}{4}\right)$

D View Text Solution

5. Find a linear approximation for the following
functions at the indicated points.

$$
f(x)=x^{3}-5 x+12, x_{0}=2
$$

6. Evaluate: $\int_{0}^{\pi / 4} \frac{\sin ^{3} x}{\cos ^{5} x} d x$

- Watch Video Solution

7. For the distribution function given by
$F(x)=\left\{\begin{array}{ll}0, & x<0 \\ x^{2}, & 0 \leq x \leq 1 . \\ 1, & x>1\end{array}\right.$ Find the density
function.
Also evaluate (i) $P(0.5<x<0.75)$ (ii) $P(x \leq 0.5)$
(iii) $P(X>0.75)$

8. Verify the

Closure property

D Watch Video Solution

9. A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?

- Watch Video Solution

1. Find the inverse of $\left[\begin{array}{ll}2 & -1 \\ 5 & -2\end{array}\right]$ by Gauss Jorden method.

- Watch Video Solution

2. Find the cube roots of unity.

D Watch Video Solution
3. Solve the equation $2 x^{3}+11 x^{2}-9 x-18=0$

- Watch Video Solution

4. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$, then prove that
$x^{4}+y^{4}+z^{4}+4 x^{2} y^{2} z^{2}=2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)$

- Watch Video Solution

5. Find the equation of the hyperbola in the cases given below : passing through $(5,-2)$ and length of the transverse axis along x axis and of length 8 units.

> 6. Show that the straight lines
> $x+1=2 y=-12 z$ and $x=y+2=6 z-6$ are
skew and hence find the shortest distance between them.

D Watch Video Solution

7. The region enclosed between the graphs of $y=x$ and $y=x^{2}$ is denoted by R , Find the volume generated when R is rotated through 360° about x axis.
8. Solve : $\frac{d y}{d x}=(3 x+y+4)^{2}$

- Watch Video Solution

9. A commuter train arrives punctually at a station every half hour. Each morning, a student leaves his house to the train station. Let x denote the amount of time, in minutes, that the student waits for the train from the time he reaches the train station. It is
known that the pdf of X is
$f(x)=\left\{\begin{array}{ll}\frac{1}{30} & 0<x<30 \\ 0 & \text { elsewhere }\end{array}\right.$. Obtain interpret the
expected value of the random variable X.

- Watch Video Solution

10. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.

- Watch Video Solution

Part Iv Iv Answer All The Questions

> 1. If the system of equtions $p x+b y+c z=0, a x+q y+c z=0, a x+b y+r z=0$
has a non - trivial solution and $p \neq q, q \neq, r \neq c$, prove that $\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}=2$.
2. Two fair coins are tossed simultaneously (equivalent to a fair coin is tossed twice). Find the probability mass function for number of heads occurred.

D Watch Video Solution

3.

$z(x, y)=x e^{y}+y e^{-x}, x=e^{-t}, y=s t^{2}, s, t \in \mathbb{R}$.
Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
4. Find the value of $\tan \left(2 \tan ^{-1}\left(\frac{1}{5}\right)-\frac{\pi}{4}\right)$

- Watch Video Solution

5. Parabolic cable of a 60 m portion of the roadbed of a suspension bridge are positioned as shown below.

Vertical Cables are to be spaced every 6 m along this portion of the roadbed. Calculate the lengths of first two of these vertical cables from the vertex.

Watch Video Solution

6. Evaluate the following limits, if necessary use I' Hopital Rule :
$\lim _{x \rightarrow 0^{+}}(\cos x)^{\frac{1}{x^{2}}}$

- Watch Video Solution

7. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is Rs 150 . The cost of the two dosai, two idlies and four vadais is Rs 200. The cost of five dosai, four idlies and two vadais is Rs 250 . The family has Rs

350 in hand and they ate 3 dosai and six idlies and six
vadais. Will they be able to manage to pay the bill within the amount they had?

D Watch Video Solution

8. Solve : $12 x^{4}-56 x^{3}+89 x^{2}-56 x+12=0$

- Watch Video Solution

9. Evaluate $\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x$
10. Find the equation of the two tangents from the point (1,2) to the hyperbola $2 x^{2}-3 y^{2}=6$

- Watch Video Solution

11. $d x+x d y=e^{-y} \sec ^{2} y d y$

D Watch Video Solution
12. Solve the equation $z^{2}+27=0$

Watch Video Solution

13. Prove by vector method that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.

- Watch Video Solution

14. Verify whether the following compound propositions are tautologies or contradictions or contingency
$((p \rightarrow q) \vee(q \rightarrow r)) \rightarrow(p \rightarrow r)$

D Watch Video Solution

