©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL

ENGLISH)

SAMPLE PAPER - 5

Part I

1. If $\mathrm{A}=\left[\begin{array}{ll}2 & 0 \\ 1 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right]$
$|\operatorname{adj}(\mathrm{AB})|=$
A. -40
B. -80
C. -60
D. -20

Answer: B

D Watch Video Solution

2. $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$
A. 0
B. 1
C. -1
D. i

Answer: A

- Watch Video Solution

3. If $\omega=\operatorname{cis} \frac{2 \pi}{3}$, then number of distinct roots
of $\left|\begin{array}{ccc}z+1 & \omega & \omega^{2} \\ \omega & z+\omega^{2} & 1 \\ \omega^{2} & 1 & z+\omega\end{array}\right|=0$.
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

4. $\sin ^{-1}(\cos x)=\frac{\pi}{2}-x$ is valid for
A. $-\pi \leq x \leq 0$
B. $0 \leq x \leq \pi$
C. $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
D. $-\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}$

Answer: B

D Watch Video Solution

5. $\tan ^{-1} x+\cot ^{-1} x=\ldots \ldots$.
A. 1
B. $-\pi$
C. $\frac{\pi}{2}$
D. π

Answer: C

D Watch Video Solution

6. The equation of the normal to the circle $x^{2}+y^{2}-2 x-2 y+1=0$ which is parallel to the lines $2 x+4 y=3$ is
A. $x+2 y=3$

$$
\text { B. } x+2 y+3=3
$$

C. $2 x+4 y+3=0$

$$
\text { D. } x-2 y+3=0
$$

Answer: A

- Watch Video Solution

7. The axis of the parabola $x^{2}=20 y$ is
A. $y=5$
B. $x=5$

C. $x=0$

$$
\text { D. } y=0
$$

Answer: C

D Watch Video Solution

8. if $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$
where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such
that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$ then \vec{a} and \vec{c} are
A. \vec{a} parallel to \vec{b}
B. \vec{b} parallel to \vec{c}
C. \vec{c} parallel to \vec{a}
D. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$

Answer: C

D Watch Video Solution
9. The vector equation of a plane whose distance from the origin is p and perpendicular to a unit vector \widehat{n} is
A. $\vec{r} \cdot \vec{n}=p$
B. $\vec{r} \cdot \widehat{n}=q$
C. $\vec{r} \times \vec{n}=p$
D. $\vec{r} \cdot \widehat{n}=p$

Answer: D

D Watch Video Solution

10. The point of inflection of the curve
$y=(x-1)^{3}$ is
A. $(0,0)$
B. $(0,1)$
C. $(1,0)$
D. $(1,1)$

Answer: C

- Watch Video Solution

11. The curve $y^{2}(x-2)=x^{2}(1+x)$ has
A. $x=1$

B. $y=1$

C. $y=-1$
D. $x=-1$

Answer: D

- Watch Video Solution

12. The solution of the equation $\frac{d x}{d y}+P x=Q$ where P and Q are function of y is :

$$
\begin{aligned}
& \text { A. } y(I . F)=\int(I . F) Q d x+c \\
& \text { B. } y(I . F)=\int(I . F) Q d y+c \\
& \text { C. } y(I . F)=\int(I . F) Q d y+c \\
& \text { D. } x(I . F)=\int(I . F) Q d x+c
\end{aligned}
$$

Answer: B

D Watch Video Solution

13. A circular template has a radius of 10 cm .

The measurnment of the radius has an approximate error of 0.02 cm . Then the
percentage error in calculating area of this

template is

A. 0.2%
B. 0.4%
C. 0.04%
D. 0.08%

Answer: B
(Watch Video Solution

14. For any value of
 $n \in Z, \int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}[(2 n+1) x] d x$ is

A. $\frac{\pi}{2}$
B. π
C. 0
D. 2

Answer:

15. If n is odd then $\int_{0}^{\pi / 2} \sin ^{n} x d x$ is

$$
\begin{aligned}
& \text { А. } \frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \ldots \frac{\pi}{2} \\
& \text { B. } \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{\pi}{2} \\
& \text { C. } \frac{n}{n-1} \cdot \frac{n-2}{n-3} \cdot \frac{n-4}{n-5} \cdots \frac{3}{2} .1 \\
& \text { D. } \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \ldots \frac{2}{3} .1
\end{aligned}
$$

Answer: D

D Watch Video Solution

16. The solution of $\frac{d y}{d x}=2^{y-x}$ is
A. $2^{x}+2^{y}=c$
B. $2^{x}-2^{y}=c$
C. $\frac{1}{2^{x}}-\frac{1}{2^{y}}=c$
D. $x+y=c$

Answer: C

D Watch Video Solution

17. If p and q are the oder and degree of the
$y \frac{d y}{d x}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)+x y=\cos x$, when
A. $p<q$
B. $p=q$
C. $p>q$
D. p exists and q does not exist .

Answer: C

D Watch Video Solution
18. A pair of dice numbered $1,2,3,4,5,6$ of a
six-sided die and 1, 2, 3, 4 of a four-sided die is
rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

19. If in 6 trials, X is a binomial variate which
follows the relation $9 P(X=4)=P(X=2)$, then the probability of success is
A. 0.125
B. 0.25
C. 0.375
D. 0.75

Answer: B

D Watch Video Solution

20. Which one of the following statements has truth value F ?
A. Chennai is in India or $\sqrt{2}$ is an integer
B. Chennai is in India or $\sqrt{2}$ is an irrational
number
C. Chennai is in China or $\sqrt{2}$ is an integer

D. Chennai is in China or $\sqrt{2}$ is an irrational

 number
Answer: C

- Watch Video Solution

Part li

1. If $\mathrm{A}=\left[\begin{array}{lr}8 & -4 \\ -5 & 3\end{array}\right]$, verify that $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A})$
$\mathrm{A}=|A| I_{2}$.

2.
 Find
 the
 value
 of
 $\sum_{k=1}^{8}\left(\cos \frac{2 k \pi}{9}+i \frac{\sin 2 k \pi}{9}\right)$

D Watch Video Solution

3. Solve the eqation : $x^{4}-14 x^{2}+45=0$
(D) Watch Video Solution
4. Find the principle value of $\sin ^{-1}\left(-\frac{1}{2}\right)$
(in radians and degrees)

- Watch Video Solution

5.

Show
that
the
points
$(2,3,4),(-1,4,5)$ and $(8,1,2)$ are collinear.

D Watch Video Solution
6. Evaluate : $\int_{0}^{2 \pi} \frac{\cos x}{\sqrt{4+3 \sin x}} d x$

D Watch Video Solution

7. Find the order and degree of the differential
equation $\frac{d^{2} y}{d x^{2}}-y+\left(\frac{d y}{d x}+\frac{d^{3} y}{d x^{3}}\right)^{\frac{3}{2}}=0$

D Watch Video Solution

8. Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of

200 litres and a maximum of 600 litres with probability density function
$f(x)= \begin{cases}k & 200 \leq x \leq 600 \\ 0 & \text { otherwise }\end{cases}$
Find
the probability that daily sales will fall between 300 litres and 500 litres?

D Watch Video Solution

9. Let $A=\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$,

$$
B=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

$C=\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$
by any three boolean matrices of the same type. Find (i) $A \vee B$,
$A \wedge B,($ iii $)(A \vee A) \wedge C,(i v)(A \wedge B) \vee C$.

- Watch Video Solution

10. Find the general equation of a circle with centre $(-3,-4)$ and radius 3 units.
11. If $A=\frac{1}{9}\left[\begin{array}{lll}-8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4\end{array}\right]$ prove that
$A^{-1}=A^{T}$.

- Watch Video Solution

2. If $z_{1}=2+5 i, z_{2}=-3-4 i$, and $z_{3}=1$
$+I$, find the additive and multiplicative inverse
of z_{1}, z_{2} and z_{3}.

D Watch Video Solution
3. Solve the equation
$3 x^{3}-26 x^{2}+52 x-24=0$ if its roots form a geometric progression.

D Watch Video Solution

4. Find the value of
$\cot ^{-1}\left(\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{4}{5}\right)$

D Watch Video Solution

5. if the normal at the point t_{1} on the parabola $y^{2}=4 a x$ meets the parabola again in the point t_{2} then prove that $t_{2}=-\left(t_{1}+\frac{2}{t_{1}}\right)$

- Watch Video Solution

6. Find the coordinates of the foot of the perpendicular drawn from the point $(-1,2,3)$ to the straight
line
$\vec{r}=(\vec{i}-4 \hat{j}+3 \hat{k})+t(2 \hat{i}+3 \hat{j}+\hat{k})$

Also, find the shortest distance from the given point to the straight line.

D Watch Video Solution
7. Find the asymptotes of the curve
$f(x)=\frac{2 x^{2}-8}{x^{2}-16}$

- Watch Video Solution

8. Evaluate : $\int_{0}^{1} x(1-x)^{n} d x$.
9. For the distribution function given by
$F(x)= \begin{cases}0, & x<0 \\ x^{2}, & 0 \leq x \leq 1 . \\ 1, & x>1\end{cases}$
function.

Also evaluate (i) $P(0.5<x<0.75)$
$P(x \leq 0.5)$ (iii) $P(X>0.75)$

D Watch Video Solution
10. Let $w(x, y)=x y+\frac{e^{y}}{y^{2}+1}$ for all (x, y)
$\in \mathbb{R}^{2}$. Calculate $\frac{\partial^{2} w}{\partial y \partial x}$ and $\frac{\partial^{2} w}{\partial x \partial y}$

- Watch Video Solution

Part lv

1. An amount of Rs 65,000 is invested in three bonds at the rates of $6 \%, 8 \%$ and 10% per annum respectively. The total annual income is

Rs 4,800 . The income from the third bond is Rs

600 more than that from the second bond.
Determine the price of each bond. (Use Gaussian elimination method.)

- Watch Video Solution

2. Find the equation of the curve whose slope is $\frac{y-1}{x^{2}+x}$ and which passes through the point (1,0).

-
 Watch Video Solution

3. If $\arg (z-1)=\frac{\pi}{6}$ and $\arg (z+1)=2 \frac{\pi}{3}$,
then prove that $|z|=1$.

- Watch Video Solution

4. Integrate the function
$3 x^{2}$
$\overline{x^{6}+1}$

- Watch Video Solution

5. Solve
the
equation
$x^{3}-9 x^{2}+14 x+24=0$ if it is given that two of its roots are in the ratio 3:2.

D Watch Video Solution

> 6. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar Al,so
find the equation of the plane containing these two lines.
7. Find the area of the region bounded by the parabola $y^{2}=x$ and the line $y=x-2$

- Watch Video Solution

8. $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{\sin 2 x}{\log x}$

- Watch Video Solution

9. $\cos \left(\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)\right)$ is :

D Watch Video Solution

10. Find the mean of a random variable X, whose probability density function is
$f(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x} & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$.

- Watch Video Solution

11. Show that the equation of the normal to the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at ' θ ' is $x \cos \theta-y \sin \theta=a \cos 2 \theta$.

D View Text Solution

12. Verify (i) closure property (ii) commutative property (iii) associative property (iv) existence of identity and (v) existence of inverse for the operation $+_{5}$ on \mathbb{Z}_{5} using table corresponding to addition modulo 5.
13. Prove that $g(x, y)=x \log \left(\frac{y}{x}\right)$ is homogenous, what is the degree? Verify

Euler's Theorem for g.

D Watch Video Solution

