©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER - 6

1. If $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{9}$ square matrix A is
A. 3
B. 4
C. 2
D. 5

Answer:

D Watch Video Solution

2. If $\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$ and $\mid 9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2}$ $z_{3}=12 \mid$, then the value of $\left|z_{1}+z_{2}+z_{3}\right|$ is
A. 1
B. 2
C. 3
D. 4

(-) Watch Video Solution

3. The value of $\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)$ is
A. $\operatorname{cis} \frac{2 \pi}{3}$
B. $\operatorname{cis} \frac{4 \pi}{3}$
C. $-\operatorname{cis} \frac{2 \pi}{3}$
D. $-\operatorname{cis} \frac{4 \pi}{3}$

Answer:

- Watch Video Solution

4.

$\cot ^{-1}(\sqrt{\sin \alpha})+\tan ^{-1}(\sqrt{\sin \alpha})=u$, then $\cos 2 u$ is equal to
A. $\tan ^{2} \alpha$
B. 0
C. -1
D. $\tan 2 \alpha$

Answer:

- Watch Video Solution

5. If $\cot ^{-1} x=\frac{2 \pi}{5}$ for some $x \in R$, the value of $\tan ^{-1} \mathrm{x}$ is
A. $-\frac{\pi}{10}$
B. $\frac{\pi}{5}$
C. $\frac{\pi}{10}$
D. $-\frac{\pi}{5}$

Answer:

- Watch Video Solution

6. The radius of the circle passing through the point $(6,-2)$ two of whose diameter are $x+y=6$ and $x+2 y=4$ is
A. 10
B. $2 \sqrt{5}$
C. 6
D. 4

Answer:

- Watch Video Solution

7. The length of the L.R. of $x^{2}=-4 y$ is
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

8. Distance from the origin to the plane $3 x-6 y+2 z+7=0$ is
A. 0
B. 1
C. 2
D. 3

Answer:

- Watch Video Solution

9. The distance from the origin to he plane $\vec{r}(2 \hat{i}-\hat{j}+5 \hat{k})=7$ is
A. $\frac{7}{\sqrt{30}}$
B. $\frac{\sqrt{30}}{7}$
C. $\frac{30}{7}$
D. $\frac{7}{30}$

Answer:

- Watch Video Solution

10. The number given by the Mean value theorem for the
function $\frac{1}{x}, x \in[1,9]$ is
A. 2
B. 2.5
C. 3
D. 3.5

Answer:

- Watch Video Solution

11. f is a differentiable function defined on an interval I with positive derivative. Then f is \qquad
A. increasing on I
B. decreasing on I
C. strictly increasing on I
D. strictly decreasing on I

Answer:

- Watch Video Solution

12. If we measure the side of a cube to be 4 cm with an error of 0.1 cm , then the error in our calculation of the volume is
A. $0.4 \mathrm{cu} . \mathrm{cm}$
B. $0.45 \mathrm{cu} . \mathrm{cm}$
C. $2 \mathrm{cu} . \mathrm{cm}$
D. $4.8 \mathrm{cu} . \mathrm{cm}$

Answer:

D Watch Video Solution

13. If $\mathrm{u}(\mathrm{x}, \mathrm{y})=e^{x^{2}+y^{2}}$, then $\frac{\partial u}{\partial x}$ is equal to
A. $e^{x^{2}+y^{2}}$
B. 2 xu
C. $x^{2} u$
D. $y^{2} u$

Answer:

14. The value of $\int_{0}^{\infty} e^{-3 x} x^{2} d x$ is
A. $\frac{7}{27}$
B. $\frac{5}{27}$
C. $\frac{4}{27}$
D. $\frac{2}{27}$

Answer:

- Watch Video Solution

15. $\int_{a}^{b} f(x) d x=$
A. $\int_{0}^{a} f(x-a) d x$
B. $\int_{0}^{a} f(a-x) d x$
C. $\int_{0}^{a} f(2 a-x) d x$
D. $\int_{0}^{a} f(x-2 a) d x$

Answer:

- Watch Video Solution

16. The integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is x, then $P(x)$
A. x
B. $\frac{x^{2}}{2}$
C. $\frac{1}{x}$
D. $\frac{1}{x^{2}}$

Answer:

- Watch Video Solution

17. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{3}}+x^{\frac{1}{4}}=0$ are respectively.
A. 2,3
B. 3,3
C. 2,6
D. 2,4

Answer:

18. Which of the following is a discrete random variable?
I. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets
at a moment.
III. The time taken to complete a telephone call.
A. I and II
B. II only
C. III only
D. II and III

Answer:

19. If p is true and q is false, then which of the following is not true?
A. $p \rightarrow q$ is false
B. $p \vee q$ is true
C. $p \wedge q$ is false
D. $p \leftrightarrow q$ is ture

Answer:

- Watch Video Solution

20. The operation $*$ defined by $a * b=\frac{a b}{7}$ is not a binary operation on
A. \mathbb{Q}^{+}
B. \mathbb{Z}
C. \mathbb{R}
D. \mathbb{C}

Answer:

- Watch Video Solution

Part li

1. Using elementary transformations find the inverse of the following matrix $\left[\begin{array}{ll}4 & 7 \\ 3 & 6\end{array}\right]$
2. If $z_{1}=1-3 \mathrm{i}, z_{2}=-4 \mathrm{i}$ and $z_{3}=5$, show that
$\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$

(Watch Video Solution

3. Find a polynomial equation of minimum degree with rational coefficients, having $2+\sqrt{3}$ I as a root.

- Watch Video Solution

4. Evaluate : $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+17 x+29}{x^{4}}\right)$
5.

$g(x, y)=2 y+x^{2}, x=2 r-s, y=r^{2}+2 s, r, s \in \mathbb{R}$.
Find $\frac{\partial g}{\partial r}, \frac{\partial g}{\partial s}$

D Watch Video Solution

6. Evaluate $\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} x+\cos ^{4} x\right) d x$

- Watch Video Solution

7. Find the differential equation corresponding to the family of curves represented by the equation $y=A e^{8 x}+B e^{-8 x}$, where A and B are arbitrary constants.

(Watch Video Solution

8. If $\mathrm{F}(x)=\frac{1}{\pi}\left(\frac{\pi}{2}+\tan ^{-1} x\right)-\infty<x<\infty$ is a a distribution function of a continuous variable X find P $(0 \leq x \leq 1)$

- Watch Video Solution

9. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.

- Watch Video Solution

10. $\begin{gathered}\text { Show } \\ \frac{x-1}{4} \\ 4\end{gathered} \frac{2-y}{6}=\frac{z-4}{12}$ and $\frac{x-3}{-2}=\frac{y-3}{3}=\frac{5-z}{6}$
are parallel.

D Watch Video Solution

Part lif

1. Using elementary transformations find the inverse of the
$\operatorname{matrix}\left[\begin{array}{lll}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$

- Watch Video Solution

2. Find the square roots of -15-8i
3. Find the sum of the squares of the roots of $a x^{4}+b x^{3}+c x^{2}+d x+e=0, a \neq 0$.

- Watch Video Solution

4. For what value of x, the inequality $\frac{\pi}{2}<\cos ^{-1}(3 x-1)<\pi$ holds ?

D Watch Video Solution

5. Find the foot of the perpendicular drawn from the point $(5,4,2)$ to the line $\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$. Also, find the equation of the perpendicular.
6. Evaluate $\int_{0}^{\infty} \frac{x^{n}}{n^{x}} \mathrm{dx}$, where n is a positive integer.

- Watch Video Solution

7. The engine of a motor boat moving at $10 \mathrm{~m} / \mathrm{s}$ is shut off.

Given that the restardation at any subsequent time (aftere shutting off the engine) equal to the velocity at that time.

Find the velocity after 2 seconds of switching off the engine.

- Watch Video Solution

8. The probability that Mr. Q hits a target at any trial is $\frac{1}{4}$. Suppose he tries at the target 10 times. Find the probability that he hits the target (i) exactly 4 times (ii) at least one time.

D Watch Video Solution

9. Consider the binary operation $*$ defined on the set
$A=\{a, b, c, d\}$ by the following table.

$\begin{array}{lllll}a & a & c & b & d\end{array}$
$\begin{array}{lllll}b & d & a & b & c\end{array}$
$\begin{array}{lllll}c & c & d & a & a\end{array}$
$d \quad d \quad b \quad a \quad c$
It is commutative and associative ?
10. Evaluate the following limit, if necessary use I' Hopital

Rule $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$

(Watch Video Solution

1. Find the inverse of $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]$ by Gauss - Jordan method.

- Watch Video Solution

2. Find the point of intersection of the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$.

- Watch Video Solution

3. Suppose z_{1}, z_{2} and z_{3} are the vertices of an equilateral triangle inscribed in the circle $|z|=2$. If $z_{1}=1+i \sqrt{3}$ then find z_{2} and z_{3}.

- Watch Video Solution

4. If $A=\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]$, show that $A^{2}-3 A-7 I_{2}=O_{2}$ Hence find A^{-1}.
5. Solve the equation $3 x^{3}-16 x^{2}+23 x-6=0$ if the product of two roots is 1 .

D Watch Video Solution

6. The mean and variance of a binomial variate x are respectively 2 and 1.5 then $P(X=0)$ is

D Watch Video Solution

7. Find the value of
$\cos \left[\sin ^{-1}\left(\frac{4}{5}\right)-\tan ^{-1}\left(\frac{3}{4}\right)\right]$
8. Find, by integration, the volume of the solid generated by revolving about y-axis the region bounded between the curve $y=\frac{3}{4} \sqrt{x^{2}-16}, x \geq 4$, the y - axis and the lines $\mathrm{y}=1$ and $\mathrm{y}=6$.

- Watch Video Solution

9. A semielliptical archway over a one-way road has height of 3 m and a width of 12 m . The truck has a width of 3 m and a height of 2.7 m . Will the truck clear the opening of the

- Watch Video Solution

10. If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{1}{\sqrt{x^{2}+y^{2}}}$ then show that
$x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=-f$
(Watch Video Solution
11. Derive the equation of the plane in the intercept form.

D Watch Video Solution

12. Let A be $Q /\{1\}$. Define * on A by x * $y=x+y-x y$. Is * binary on A? If so, examine the existence of identity \& inverse properties for the operation * on A.

- Watch Video Solution

13. Find the angle between the rectangular hyperboloa $x y=$

2 and the parabola $x^{2}+4 y=0$.

- Watch Video Solution

14. A pot of boiling water at $100^{\circ} \mathrm{C}$ is removed from a stove at time $\mathrm{t}=0$ and left to cool in the kitchen. After 5 minutes, the water temperature has decreased to $80^{\circ} \mathrm{C}$, and another 5 minutes later it has dropped to $65^{\circ} \mathrm{C}$. Determine the temperature of the kitchen.

- Watch Video Solution

