©゙doubtnut

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER -11 (UNSOLVED)

Part I

1. If A, B and C are invertible matrices of some order, then which one of the following is not true?
A. $\operatorname{adj} \mathrm{A}=|\mathrm{A}| A^{-1}$
B. $\operatorname{adj}(A B)=(\operatorname{adj} A)(\operatorname{adj} B)$
C. $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
D. $(\mathrm{ABC})^{-1}=C^{-1} B^{-1} A^{-1}$
2. z_{1}, z_{3}, and z_{3} are complex numbers such that $z_{1}+z_{2}+z_{3}=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ then $z_{1}^{2}+z_{2}^{2}+z_{3}^{3}$
A. 3
B. 2
C. 1
D. 0

Answer:

- Watch Video Solution

3. If $a+i b=(8-6 i)-(2 i-7)$ then the values of a and b are
A. $8,-15$
B. 8,15
C. 15,9
D. $15,-8$

Answer: A

- Watch Video Solution

4. If $\rho(A)=\rho([A \mid B])$, then the system $A X=B$ of linear equations is
A. consistent and has a unique solution
B. consistent
C. consistent and has infinitely many solution
D. inconsistent

Answer: C

5. $\sin ^{-1} \frac{3}{5}-\cos ^{-1} \frac{12}{13}+\sec ^{-1} \frac{5}{3}-\operatorname{cosec}^{-1} \frac{13}{12}$ is equal to
A. 2π
B. π
C. 0
D. $\tan ^{-1} \frac{12}{65}$

Answer:

- Watch Video Solution

6. If $\sin ^{-1} \frac{x}{5}+\operatorname{cosec}-\frac{5}{4}=\frac{\pi}{2}$, then the value of x is
A. 4
B. 5
C. 2
D. 3

Answer: C

- Watch Video Solution

7. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points if
A. $15<m<65$
B. $35<m<85$
C. $-85<m<-35$
D. $-35<m<15$

Answer: A::C

- Watch Video Solution

8. The equation of the tangent at $(3,-6)$ to the parabola $y^{2}=12 x$ is
A. $x-y-3=0$
B. $x+y-3=0$
C. $x-y+3=0$
D. $x+y+3=0$

Answer: C

D Watch Video Solution

9. If direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then.
A. $C= \pm 3$
B. $c= \pm \sqrt{3}$
C. $c<0$
D. $0<c<1$

Answer: C

10. Find the point on the curve $6 y=x^{3}+2$ at which y-coordinate changes 8 times as fast as x-coordinate is:
A. $(4,11)$
B. $(4,-11)$
C. $(-4,11)$
D. $(-4,-11)$

Answer: A: D

- Watch Video Solution

11. $x \xrightarrow{\lim } 0 \frac{x}{\tan x}$ is
A. 1
B. -1
C. 0
D. ∞

Answer: A

- Watch Video Solution

12. If $v(x, y)=\log \left(e^{x}+e^{y}\right)$, then $\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}$ is equal to
A. $e^{x}+e^{y}$
B. $\frac{1}{e^{x}+e^{y}}$
C. 2
D. 1

Answer: A

13. The curve $y^{2}=(x-1)(x-2)^{2}$ is not defined for
A. $x \geq 1$
B. $x \geq 2$
C. $x<2$
D. $x<1$

Answer: A

- Watch Video Solution

14. The value of $\int_{0}^{1} x(1-x)^{99} d x$ is
A. $\frac{1}{1100}$
B. $\frac{1}{10100}$
C. $\frac{1}{10010}$
D. $\frac{1}{10001}$

Answer: A
15. The differential equation of the family of curves $y=A e^{x}+b e^{-x}$, where A and B are arbitrary constant is
A. $\frac{d^{2} y}{d x^{2}}+y=0$
B. $\frac{d^{2} y}{d x^{2}}-\mathrm{y}=0$
C. $\frac{d y}{d x}+y=0$
D. $\frac{d y}{d x}-y=0$

Answer: B::D

- Watch Video Solution

16. The differential equation representing the family of curves $y=A \cos (x+B)$, where A and B are parameters, is
A. $\frac{d^{2} y}{d x^{2}}-y=0$
B. $\frac{d^{2} y}{d x^{2}}+\mathrm{y}=0$
C. $\frac{d^{2} y}{d x^{2}}=0$
D. $\frac{d^{2} x}{d y^{2}}=0$

Answer: B::D

- Watch Video Solution

17. Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, $42,36,34$, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. Let Y denote the number of students on that bus. Then $\mathrm{E}[\mathrm{X}]$ and $\mathrm{E}[\mathrm{Y}]$ respectively are
A. 50,40
B. 40,50
C. $40,75,40$
D. 41,41

Answer: D

D Watch Video Solution

18. If in 6 trials, X is a binomial variate which follows the relation $9 P(X=4)=P(X=2)$, then the probability of success is
A. 0.125
B. 0.25
C. 0.375
D. 0.75

Answer: B

D Watch Video Solution

19. In the set R of real number $*$ is defined as follows. Which one of the following is not a binary operation on R ?
A. $a \cdot b=\min (a . b)$
B. $a \cdot b=\max (a, b)$
C. $a \cdot b=a$
D. $\mathrm{a} \cdot \mathrm{b}=a^{b}$

Answer: A::B

- Watch Video Solution

20. The dual of $\sim(p \vee q) \vee[p \vee(p \wedge \sim r)]$ is
A. $\neg(p \wedge q) \wedge[p \vee(p \wedge \neg r)]$
B. $(p \wedge q) \wedge[p \vee(p \wedge \neg r)]$
C. $\neg(p \wedge q) \wedge[p \wedge(p \wedge r)]$
D. $\neg(p \wedge q) \wedge[p \wedge(p \vee \neg r)]$

Answer:

Part li

1. Construct a cubic equation with roots 1,1 and -2

- Watch Video Solution

2. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, show that $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{xyz}$.

- Watch Video Solution

3. Find the equation of the circlue with centre $(2,-1)$ and passing through the point (3,6) in standard form.

- Watch Video Solution

4. Prove that $(\vec{a} \cdot(\vec{b} \times \vec{c}) \vec{a}=(\vec{a} \times \vec{b}) \times(\vec{a} \times(c))$.
5. Suppose $f(x)$ is a differentiable function for all x with $f^{\prime}(x) \leq 29$ and $f(2)=17$. What is the maximum value of $f(7) ?$

- Watch Video Solution

6. In each of the following cases, determine whether the following function is homogeneous or not. If it is so , find the degree. (i)
$f(x, y)=x^{2} y+6 x^{3}+7$ (ii) $h(x, y)=\frac{6 x^{2} y^{3}-\pi y^{5}+9 x^{4} y}{2020 x^{2}+2019 y^{2}}$
(iii)

$$
\begin{equation*}
g(x, y, z)=\frac{\sqrt{3 x^{2}+5 y^{2}+z^{2}}}{4 x+7 y} \tag{iv}
\end{equation*}
$$

$U(x, y, z)=x y+\sin \left(\frac{y^{2}-2 z^{2}}{x y}\right)$

- Watch Video Solution

7. Evaluate $\int_{-1}^{1} \log \left(\frac{3-x}{3+x}\right) d x$.
8. Verify that function $y=a x^{2}+b x+c$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}=2 a$

(Watch Video Solution

9. Verify (i) closure property (ii) commutative property and (iii) associati ve property of the following operation on the given set. $(\mathrm{a} \bullet \mathrm{b})=a^{b}, \forall a, b \in \mathbb{N}$ (exponentiation property)

D Watch Video Solution

10. The probability density function of X is given by $f(x)=\left\{\begin{array}{ll}k x e^{-2 x} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{array}\right.$ Find the value of k.

- Watch Video Solution

1. In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly ? (Use Cramer's rule to solve the problem).

- Watch Video Solution

2. If $z=(\cos \theta+i \sin \theta)$, show that $z^{n}+(1) /\left(z^{n}\right)=2 \cos n \theta$ and $z^{\wedge}(n)-(1)\left(z^{\wedge}(n)\right)=2$ isinntheta

- Watch Video Solution

3. Find the value of
$\sin \left(\tan ^{-1}\left(\frac{1}{2}\right)-\cos ^{-1}\left(\frac{4}{5}\right)\right)$
4. Find centre, foci, vertices, and directrices of the following $\frac{x^{2}}{25}-\frac{y^{2}}{144}=1$

- Watch Video Solution

5. Find the torque of the resultant of the three forces represented by $-3 \vec{i}+6 \vec{j}-3 \vec{k}, 4 \vec{i}-10 \vec{j}+12 \vec{k}$, and $4 \vec{i}+7 \vec{j}$ acting at the point with position vector $8 \vec{i}-6 \vec{j}-4 \vec{k}$, about the point with position vector $18 \vec{i}+3 \vec{j}-9 \vec{k}$.

- Watch Video Solution

6. Evaluate the following :
$\int_{0}^{\frac{\pi}{2}} x^{2} \cos 2 x d x$

- Watch Video Solution

7. Verify that the function $y=4 \sin 3 x$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+9 y=0$

- Watch Video Solution

8. In a hurdle race a player has to cross 10 hurdles. The probability that he will clear each hurdle is $5 / 6$. What is the probability that he will knock down less than 2 hurdles?

- Watch Video Solution

9. Show that $[\neg p \vee \neg q] \vee p$ is a tautology.

- Watch Video Solution

10. Solve the cubic equation: $2 x^{3}-9 x^{2}+10 x=3$

Part Iv

1. The prices of three commodities A, B and C are Rs x, y and z per unit respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, $P Q$ and R earn Rs 15,000 , Rs 1,000 and Rs 4,000 respectively. Find the prices per unit of A, B and C. (Use matrix inversion method to solve the problem.)

- Watch Video Solution

2. Solve :
$\frac{1}{x}+\frac{2}{y}-\frac{1}{z}=1$
$\frac{2}{x}+\frac{4}{y}+\frac{1}{z}=5$
$\frac{3}{x}-\frac{2}{y}-\frac{2}{z}=0$ Using Crammer's rule.
3. If z_{1}, z_{2}, and z_{3} are three complex numbers such that $\left|z_{1}\right|=1, \quad\left|z_{2}\right|=2, \quad\left|z_{3}\right|=3$ and $\left|z_{1}+z_{2}+z_{3}\right|=1, \quad$ show that $\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=6$.

- Watch Video Solution

4. Solve : $12 x^{4}-56 x^{3}+89 x^{2}-56 x+12=0$

- Watch Video Solution

5. If $a_{1}, a_{2}, a_{3}, \ldots . a_{n}$ is an arithmetic progression with common difference
d.

Prove
that $\tan \left[\tan ^{-1}\left(\frac{d}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{d}{1+a_{2} a_{3}}\right)+\ldots+\tan ^{-1}\left(\frac{d}{1+a_{n} a_{n-1}}\right.\right.$

- Watch Video Solution

6. Find the parametric form vector eqution and Cartesian equations of the plane passing through the points $(2,2,1),(1,-2,3)$ and parallel to the straight line passing through the points $(2,1,-3)$ and $(-1,5,-8)$.

- Watch Video Solution

7. Find the area of the region bounded by the curve $2+x-x^{2}+y=0$, x-axis, $x=-3$ and $\mathrm{x}=3$

- Watch Video Solution

8. Verify (i) closure property (ii) commutative property (iii) associative property (iv) existence of identity and (v) existence of inverse for the operation \times_{11} on a subset $A=\{1,3,4,5,9\}$ of the set of remainders \{0,1,2,3,4,5,6,7,8,9,10\}.
9. A rod of length 1.2 m moves with its ends always touching the coordinate axes. The locus of a point Pon the rod, which is 0.3 m from the end in contact with x-axis is an ellipse. Find the eccentricity.

- Watch Video Solution

10. Solve the following differential equations :
$x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$

- Watch Video Solution

11. Evaluate : $\int_{0}^{2}\left(x^{2}+x+2\right) \mathrm{dx}$

- Watch Video Solution

12. Sketch the curve $\mathrm{y}=\frac{x^{2}-3 x}{(x-1)}$
13. A multiple choice examination has ten questions, each question has four distractors with exactly one correct answer. Suppose a student answers by guessing and it X denotes the number of correct answers, find (i) binomial distribution (ii) probability that the student will get seven correct answers (iii) the probability of getting at least one correct answer.

- Watch Video Solution

14. $\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy}+\mathrm{yz}+\mathrm{zx}, \mathrm{x}=\mathrm{u}-\mathrm{v}, \mathrm{y}=\mathrm{uv}, \mathrm{z}=\mathrm{u}+\mathrm{v}, \mathrm{u}, \mathrm{v} \in$ R. Find $\frac{\partial w}{\partial u}, \frac{\partial w}{\partial v}$ and evaluate then at $\left(\frac{1}{2}, 1\right)$.

- Watch Video Solution

