

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER -11 (UNSOLVED)

1. If A, B and C are invertible matrices of some order, then which one of the following is not true?

A. adj A = $|A|A^{-1}$

B. adj (AB) = (adj A) (adj B)

C. det
$$A^{-1} = (\mathrm{det} A)^{-1}$$

D. (ABC)⁻¹ =
$$C^{-1}B^{-1}A^{-1}$$

Answer: A::B::D

2.	$z_1, z_3,$	and z_3	are	complex	numbers	such	that
$z_1 +$	$-z_2 + z_3$	$= 0 \mathrm{and} \mid$	$ z_1 = z $	$ z_2 = z_3 $ = 1	then $z_1^2+z_2^2$	$+ z_3^3$	
A	A. 3						
B	3. 2						
C	2.1						
-							
L	0.0						

Answer:

Watch Video Solution

3. If a + ib = (8 - 6i) - (2i - 7) then the values of a and b are

A. 8, - 15

B. 8, 15

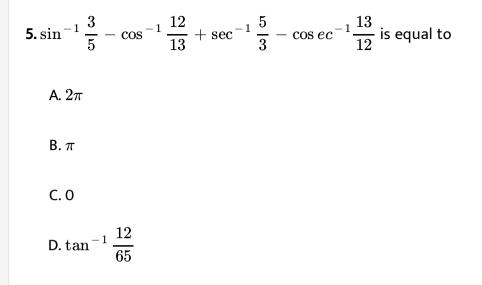
C. 15, 9

D. 15, - 8

Answer: A

Watch Video Solution

4. If ρ (A) = ρ ([A|B]), then the system AX = B of linear equations is


A. consistent and has a unique solution

B. consistent

C. consistent and has infinitely many solution

D. inconsistent

Answer: C

Answer:

Watch Video Solution

6. If
$$\sin^{-1}rac{x}{5}+\cos ec^{-1}rac{5}{4}=rac{\pi}{2},\,$$
 then the value of x is

A. 4

B. 5

C. 2

D. 3

Answer: C

7. The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line 3x -4y =m at two distinct points if

A. 15 < m < 65

B. 35 < m < 85

- ${\sf C}.-85 < m < -35$
- ${\sf D.} 35 < m < 15$

Answer: A::C

8. The equation of the tangent at (3,-6) to the parabola y^2 = 12x is

A. x - y - 3 = 0B. x + y - 3 = 0C. x - y + 3 = 0D. x + y + 3 = 0

Answer: C

Watch Video Solution

9. If direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then.

A. c = \pm 3

B. c = $\pm \sqrt{3}$

C. c < 0

 $\mathsf{D.0} < c < 1$

Answer: C

10. Find the point on the curve $6y = x^3 + 2$ at which y-coordinate changes 8 times as fast as x-coordinate is:

A. (4,11)

B. (4,-11)

C. (-4,11)

D. (-4,-11)

Answer: A::D

11.
$$x \stackrel{ ext{lim}}{ o} 0 rac{x}{ an x}$$
 is

A. 1

 $\mathsf{B.}-1$

C. 0

Answer: A

Watch Video Solution

12. If
$$v(x, y) = \log(e^x + e^y)$$
, then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equal to
A. $e^x + e^y$
B. $\frac{1}{e^x + e^y}$
C. 2
D. 1

Answer: A

13. The curve $y^2 = \left(x-1
ight) \left(x-2
ight)^2$ is not defined for

A. $x \ge 1$ B. $x \ge 2$ C. x < 2D. x < 1

Answer: A

Watch Video Solution

14. The value of
$$\int_{0}^{1} x(1-x)^{99} dx$$
 is
A. $\frac{1}{1100}$
B. $\frac{1}{10100}$
C. $\frac{1}{10010}$
D. $\frac{1}{10001}$

Answer: A

15. The differential equation of the family of curves $y = Ae^x + be^{-x}$, where A and B are arbitrary constant is

A.
$$\frac{d^2y}{dx^2} + y = 0$$

B. $\frac{d^2y}{dx^2} - y = 0$
C. $\frac{dy}{dx} + y = 0$
D. $\frac{dy}{dx} - y = 0$

Answer: B::D

Watch Video Solution

16. The differential equation representing the family of curves $y = A\cos(x+B)$, where A and B are parameters, is

A.
$$\frac{d^2y}{dx^2} - y = 0$$

B. $\frac{d^2y}{dx^2} + y = 0$

C.
$$\displaystyle rac{d^2 y}{dx^2} = 0$$

D. $\displaystyle rac{d^2 x}{dy^2} = 0$

Answer: B::D

Watch Video Solution

17. Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. Let Y denote the number of students on that bus. Then E[X] and E[Y] respectively are

A. 50,40

B. 40,50

C. 40,75,40

D. 41,41

Answer: D

18. If in 6 trials, X is a binomial variate which follows the relation 9P(X=4)=P(X=2), then the probability of success is

A. 0.125

B. 0.25

C. 0.375

D. 0.75

Answer: B

19. In the set R of real number * is defined as follows. Which one of the

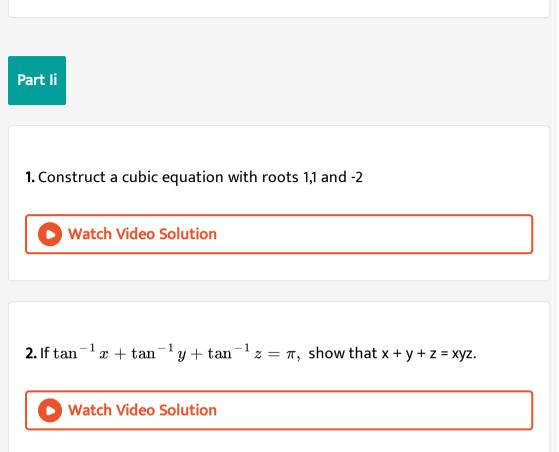
following is not a binary operation on R?

A. a•b = min (a.b) B. a•b = max (a,b) C. a•b = a D. a •b = a^b

Answer: A::B

Watch Video Solution

20. The dual of
$$au(p \lor q) \lor [p \lor (p \land au r)]$$
 is


A.
$$eg (p \wedge q) \wedge [p \vee (p \wedge \neg r)]$$

B.
$$(p \wedge q) \wedge [p \vee (p \wedge \neg r)]$$

C.
$$eg (p \wedge q) \wedge [p \wedge (p \wedge r)]$$

D.
$$eg (p \wedge q) \wedge [p \wedge (p \vee \ \neg r)]$$

Answer:

3. Find the equation of the circlue with centre (2,-1) and passing through the point (3,6) in standard form.

4. Prove that
$$\left(\overrightarrow{a}, \left(\overrightarrow{b} \times \overrightarrow{c}\right)\overrightarrow{a} = \left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{a} \times (c)\right)$$
.

5. Suppose f(x) is a differentiable function for all x with $f'(x) \leq 29$ and f(2) = 17. What is the maximum value of f (7)?

Watch Video Solution

6. In each of the following cases , determine whether the following function is homogeneous or not. If it is so , find the degree. (i) $f(x, y) = x^2y + 6x^3 + 7 \text{ (ii)} h(x, y) = \frac{6x^2y^3 - \pi y^5 + 9x^4y}{2020x^2 + 2019y^2}$ (iii) $g(x, y, z) = \frac{\sqrt{3x^2 + 5y^2 + z^2}}{4x + 7y}$ (iv) $U(x, y, z) = xy + \sin\left(\frac{y^2 - 2z^2}{xy}\right)$

Watch Video Solution

7. Evaluate
$$\int_{-1}^{1} \log \left(rac{3-x}{3+x}
ight) dx.$$

8. Verify that function $y = ax^2 + bx + c$ is a solution of the differential

equation
$$rac{d^2y}{dx^2}=2a$$

Watch Video Solution

9. Verify (i) closure property (ii) commutative property and (iii) associati ve

property of the following operation on the given set.

(a•b) = $a^b, \ orall a, b \in \mathbb{N}$ (exponentiation property)

Watch Video Solution
10. The probability density function of X is given by

$$f(x) = \begin{cases} kxe^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$$
Find the value of k.
Watch Video Solution

1. In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly ? (Use Cramer's rule to solve the problem).

Watch Video Solution

2. If $z = (\cos \theta + i \sin \theta)$, show that $z^n + (1)/(z^n) = 2 \cos n\theta$ and

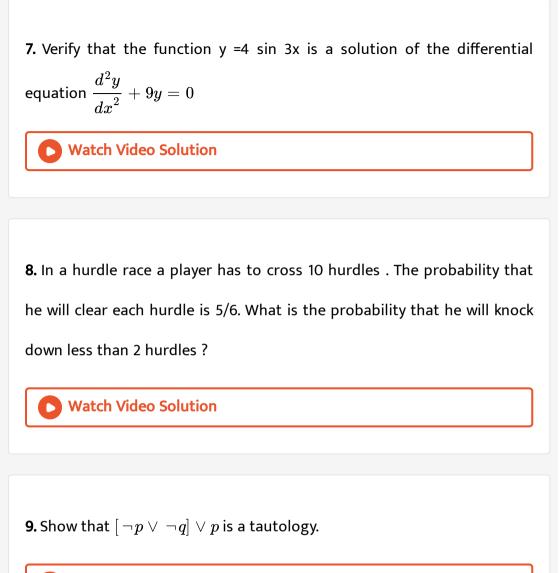
z^(n)-(1)(z^(n))=2isinntheta

Watch Video Solution

3. Find the value of

$$\sin\left(\tan^{-1}\left(\frac{1}{2}\right) - \cos^{-1}\left(\frac{4}{5}\right)\right)$$

4. Find centre, foci, vertices, and directrices of the following $\frac{x^2}{25} - \frac{y^2}{144} = 1$


Watch Video Solution

5. Find the torque of the resultant of the three forces represented by $-3\overrightarrow{i} + 6\overrightarrow{j} - 3\overrightarrow{k}, 4\overrightarrow{i} - 10\overrightarrow{j} + 12\overrightarrow{k}$, and $4\overrightarrow{i} + 7\overrightarrow{j}$ acting at the point with position vector $8\overrightarrow{i} - 6\overrightarrow{j} - 4\overrightarrow{k}$, about the point with position vector $18\overrightarrow{i} + 3\overrightarrow{j} - 9\overrightarrow{k}$.

Watch Video Solution

6. Evaluate the following :

$$\int_0^{\frac{\pi}{2}} x^2 \cos 2x dx$$

Watch Video Solution

10. Solve the cubic equation : $2x^3 - 9x^2 + 10x = 3$

1. The prices of three commodities A,B and C are Rs x, y and z per unit respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, PQ and R earn Rs 15,000, Rs 1,000 and Rs 4,000 respectively. Find the prices per unit of A,B and C. (Use matrix inversion method to solve the problem.)

Watch Video Solution

2. Solve :

 $\frac{1}{x} + \frac{2}{y} - \frac{1}{z} = 1$ $\frac{2}{x} + \frac{4}{y} + \frac{1}{z} = 5$ $\frac{3}{x} - \frac{2}{y} - \frac{2}{z} = 0$ Using Crammer's rule.

3. If z_1, z_2 , and z_3 are three complex numbers such that $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|z_1 + z_2 + z_3| = 1$, show that $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 6$.

Watch Video Solution

4. Solve :
$$12x^4 - 56x^3 + 89x^2 - 56x + 12 = 0$$

Watch Video Solution

5. If $a_1, a_2, a_3, \ldots, a_n$ is an arithmetic progression with common

difference d. Prove that

$$\tan\left[\tan^{-1}\left(\frac{d}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{d}{1+a_2a_3}\right) + \ldots + \tan^{-1}\left(\frac{d}{1+a_na_{n-1}}\right)\right]$$

6. Find the parametric form vector eqution and Cartesian equations of the plane passing through the points (2, 2, 1), (1, -2, 3) and parallel to the straight line passing through the points (2, 1, -3) and (-1, 5, -8).

Watch Video Solution

7. Find the area of the region bounded by the curve $2 + x - x^2 + y = 0$,

x-axis, $x=\,-\,3$ and x= 3

8. Verify (i) closure property (ii) commutative property (iii) associative property (iv) existence of identity and (v) existence of inverse for the operation \times_{11} on a subset A = {1,3,4,5,9} of the set of remainders {0,1,2,3,4,5,6,7,8,9,10}.

9. A rod of length 1.2 m moves with its ends always touching the coordinate axes. The locus of a point Pon the rod, which is 0.3 m from the end in contact with x-axis is an ellipse. Find the eccentricity.

10. Solve the following differential equations :

$$xrac{dy}{dx}=y-x\cos^2\Bigl(rac{y}{x}\Bigr)$$

Watch Video Solution

11. Evaluate :
$$\int_0^2 ig(x^2+x+2ig) \mathsf{d} \mathsf{x}$$

Watch Video Solution

12. Sketch the curve y =
$$rac{x^2-3x}{(x-1)}$$

13. A multiple choice examination has ten questions, each question has four distractors with exactly one correct answer. Suppose a student answers by guessing and it X denotes the number of correct answers, find (i) binomial distribution (ii) probability that the student will get seven correct answers (iii) the probability of getting at least one correct answer.

Watch Video Solution

14. $W(x,y,z) = xy + yz + zx, x = u - v, y = uv, z = u + v, u, v \in R$. Find $\frac{\partial w}{\partial u}, \frac{\partial w}{\partial v}$ and evaluate then at $\left(\frac{1}{2}, 1\right)$.