

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER -13

Part I Choose The Correct Answer Answer All The Question

1. If
$$A=egin{bmatrix}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{bmatrix}$$
 and A(adj A) = $\begin{bmatrix}k&0\\0&k\end{bmatrix}$, then

k=.....

A. 0

 $B.\sin\theta$

 $\mathsf{C}.\cos\theta$

D. 1

Answer: D

Watch Video Solution

2. In the system of liner equations with 3 unknowns if $ho(A)=
ho([A\mid B])=1$, the system has

A. has unique solution

solution

B. reduces to 2 equations and has infinitely many

C. reduces to a single equation and has infinitely

many solution

D. is inconsistent

Answer: C

- **3.** If $|z-2+i| \le 2$, then the greatest value of |z| is
 - A. $\sqrt{3}-2$
 - B. $\sqrt{3}+2$
 - $\mathsf{C.}\,\sqrt{5}-2$
 - D. $\sqrt{5}+2$

Answer: D

Watch Video Solution

4. The value of $z\bar{z}$ is......

A.
$$|z|$$

B.
$$|z|^2$$

$$\mathsf{C.}\,2|z|$$

D.
$$2|z|^2$$

Answer: B

5. A zero of x^3+64 is

A. 0

B. 4

C. 4i

D.-4

Answer: D

Watch Video Solution

6. If $\sin^{-1}x + \cot^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$, then x is equalt to

A. $\frac{1}{2}$

B.
$$\frac{1}{\sqrt{5}}$$
C. $\frac{2}{\sqrt{5}}$
D. $\frac{\sqrt{3}}{2}$

Answer: B

7.
$$an^{-1} igg(rac{1}{4}igg) + an^{-1} igg(rac{2}{9}igg)$$
 is equal to

A.
$$\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$$

B.
$$\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$$

$$\mathsf{C.}\;\frac{1}{2}\mathrm{tan}^{-1}\!\left(\frac{3}{5}\right)$$

D.
$$\tan^{-1}\left(\frac{1}{2}\right)$$

Answer: D

- 8. Let C be the circle with centre at (1,1) and radius =1. If T is the circle centered at (0,y) passing through the origin and touching the circle C externally. Then the radius of T is equal to

 - A. $\frac{\sqrt{3}}{\sqrt{2}}$ B. $\frac{\sqrt{3}}{2}$
 - C. $\frac{1}{2}$ D. $\frac{1}{4}$

Answer: D

Watch Video Solution

9. Sum of the focal distance of the ellipse

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$
 is

A.
$$\left(\frac{b^2}{c}, \frac{a^2m}{c}\right)$$

$$\mathsf{B.}\left(-\,\frac{a^2m}{c},\frac{b^2}{c}\right)$$

$$\mathsf{C.}\left(\frac{a^2m}{c},\;-\frac{b^2}{c}\right)$$

D.
$$\left(\frac{-a^2m}{c}, -\frac{b^2}{c}\right)$$

Answer: B

10.

If

 $ar a=2\hat i+3\hat j-\hat k,$ $ar b=\hat i+2\hat j-5\hat j,$ $ar c=3\hat i+5\hat j-\hat k,$ then a vector perpendicular to ar a and lies in the plane

A.
$$-17\hat{i} + 21\hat{j} - 97\hat{k}$$

containing $ar{b}$ and $ar{c}$ is......

$$\mathtt{B.} - 17\hat{i} + 21\hat{j} - 122\hat{k}$$

$$\mathsf{C.} - 17\hat{i} - 21\hat{j} + 97\hat{k}$$

D.
$$-17\hat{i}-21\hat{j}-97\hat{k}$$

Answer: D

11. One of the closed points on the curve $x^2-y^2=4$ to the point (6,0) is......

B.
$$(\sqrt{5}, 1)$$

c.
$$(3, \sqrt{5})$$

D.
$$(\sqrt{13}, -\sqrt{3})$$

Answer: C

Watch Video Solution

12. If $f(x) = \frac{x}{x+1}$, then its differential is given by

A.
$$-rac{1}{\left(x+1
ight)^{2}}dx$$

$$\mathsf{B.}\,\frac{1}{\left(x+1\right)^2}dx$$

$$\mathsf{C.}\,\frac{1}{x+1}\mathsf{dx}$$

$$\mathsf{D.} - \frac{1}{x+1} \, \mathsf{dx}$$

Answer: B

Watch Video Solution

13. The curve
$$y^2 = (x-1)(x-2)^2$$
 has......

A. as asymptote x=1

B. an asymptote x=2

C. two asymptote x=1 and x=2

D. no asymptote

Answer: D

Watch Video Solution

14. If
$$\int_0^x f(t)dt = x + \int_x^1 t f(t)dt$$
, then the value of f(1) is

A. $\frac{1}{2}$

B. 2

C. 1

D. $\frac{3}{4}$

Answer: A

Watch Video Solution

15. The number of arbitrary constants in the general solutions of order n and n+1 are respectively

A. n-1, n

B. n,n+1

C. n+1, n+2

D. n+1, n

Answer: B

16. The degree of the differential equation

$$y(x)=1+rac{dy}{dx}+rac{1}{1.2}{\left(rac{dy}{dx}
ight)}^2+rac{1}{1.2.3}{\left(rac{dy}{dx}
ight)}^3+\ldots$$

is

- A. 2
- B. 3
- C. 1
- D. 4

Answer: C

17. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are

- A. I + 2n, i=1,2....n
- B. 2i-n, i=0,1,2....n
- C. n-I, i=0,1,2....n
- D. 2i + 2n,i=0,1,2,....n

Answer: B

18. A random variable X has binominal distribution withn = 25 and p = 0.8 then standard deviation of X is

A. 6

B. 4

C. 3

D. 2

Answer: D

Watch Video Solution

19. In the last column of the truth table for extstyle (p ee extstyle extstyle q)

the number of final outcomes of the truth value 'F' are

- A. 1
- B. 2
- C. 3
- D. 4

Answer: C

- 20. Mean and variance of binomial distribution are.
 - A. nq, npq
 - B. np, \sqrt{npq}
 - C. np,np

D. np, npq

Answer: D

Watch Video Solution

21. Find the modulus and principal argument of (1+i) and hence express it in the polar form.

Watch Video Solution

Part Ii Ii Answer Any Seven Questions Question No 30 Is Compulsory 1. If α, β, γ and δ are the roots of the polynomial equation $2x^4+5x^3-7x^2-8=0$, find a quadratic equation with integer corddicients whose roots are $\alpha+\beta+\gamma+\delta$ and $\alpha\beta\gamma\delta$.

2. Find the value of the expression in terms of x, with the help of a reference triangle.

$$\cos(\tan^{-1}(3x-1))$$

- **3.** For what value of x the tangent of the curve $y=x^3-3x^2+x-2$ is parallel to the line y=x
 - Watch Video Solution

4. Find a linear approximation for the following function at the indicated points.

$$h(x) = \frac{x}{x+1}, x_0 = 1$$

Watch Video Solution

5. Answer the equation:

$$\int \frac{1}{x + \sqrt{x}} dx$$

6. Form the differential equation by eliminating the arbitrary constants A and B from $v = A\cos x + B\sin x$

Watch Video Solution

7. For the probability density function f(x) = $\begin{cases} 2e^{-2x} & x>0\\ 0 & x<0 \end{cases}$ find F(2)

8. Verify the

Closure property

Watch Video Solution

9. Find the rank of the matrix $\begin{bmatrix} 2 & -2 & 4 & -3 \\ -3 & 4 & -2 & -1 \\ 6 & 2 & -1 & 7 \end{bmatrix}$

by reducing it to an echelon form.

Watch Video Solution

Part Iii Iii Answer Any Seven Questions Question No 40 Is Compulsory **1.** Find the rank of the following matrices by row reduction method:

(i)
$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 3 & -8 & 5 & 2 \\ 2 & -5 & 1 & 4 \\ -1 & 2 & 3 & -2 \end{bmatrix}$$

$$oxed{igl[-1 \ 2 \ 3 \ -2 igr]}$$

- **2.** If $\omega \neq 1$ is a cube root of unity, show that the roots of the equation $(z-1)^3+8=0$ are $-1,1-2\omega,1-2\omega^2.$
 - **Watch Video Solution**

3. Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{3}}}$ as a root.

Watch Video Solution

4. Find the value of $\sec^2(\cot^{-1}3) + \csc^2(\tan^{-1}2)$

Watch Video Solution

5. Find the equation of the ellipse whose eccentricity is $\frac{1}{2}$, one of the foci is (2, 3) and a directrix is x = 7. Also find the length of the major and minor axes of the ellipse.

6. Expand $\sin x$ in ascending powers $x-\frac{\pi}{4}$ upto three non-zero terms.

7. The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. Find the following is calculating the area of the circular plate:

- (i) Absolute error
- (ii) Relative error
- (iii) Percentage error

Match Widos Colution

8. Evaluate
$$\int_2^3 \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} \, \mathrm{d}x$$

9. The I.E. of
$$\left(1+y^2\right)dx=\left(\tan^{-1}y-x\right)dy$$
 is

10. If
$$\widehat{a},\,\widehat{b},\,\widehat{c}$$
 are three unit vectors such that \widehat{b} and \widehat{c} are non-parallel and $\widehat{a} imes (\widehat{b} imes\widehat{c}) = rac{1}{2}\widehat{b}, \,\,\, ext{find the angle between} \,\,\, \overrightarrow{a} \,\,\, ext{and} \,\, \overrightarrow{c}.$

11. A six sided die is marked '1' on one face, '3' on two of its faces, and '5' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function

12. Find the value of $\sec^2(\cot^{-1}3) + \csc^2(\tan^{-1}2)$

13. Let $M = \left\{ \begin{bmatrix} x & x \\ x & x \end{bmatrix} : x \in R - \{0\} \right\}$ and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the existence of identify, existence of inverse properties for the operation * on M.

Watch Video Solution

14. Gravel is being duped from a conveyor belt at a rate of $30ft^3$ / \min and its coarsened such that it from a sile in the shape of a cone whose base diameter and height are always equal . How fast is the height of the pile increasing when the pile is 10 ft high ?

15. Evaluate as the limit of sums: $\int_{1}^{2} (x^2 - 1) dx$

Watch Video Solution

Part Iv Iv Answer All The Questions

1. If ax^2 +bx+c is divided by x+3,x-5, and x-1, the remainders are 21, 61 and 9 respectively. Find a,b, and c. (Use Gaussian elimination method.)

2. Find the foci, vertices and length of major and minor axis of the conic

$$4x^2 + 36y^2 + 40x - 288y + 532 = 0.$$

3. The growth of a population is proportional to the number present. If the population of a colony doubles in 50 years, in how many years will the population become triple?

4. Find the equation of the curve passing through (1,0) and which has slope $1 + \frac{y}{x}$ at (x,y)

Watch Video Solution

5. If z = x + iy and $arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$. Show that $x^2 + y^2 + 3x - 3y + 2 = 0.$

Watch Video Solution

6. Evaluate the following:

$$\int_0^{\frac{\pi}{2}} \frac{e^{-\tan x}}{\cos^6 x} dx$$

7. Find the parametric form of vector equation of a straight line passing through the point of intersection of the straight lines $\overrightarrow{r} = \left(\hat{i} + 3\hat{j} - \hat{k}\right) + t\left(2\hat{i} + 3\hat{j} + 2\hat{k}\right) \quad \text{and} \quad \frac{x-2}{1} = \frac{y-4}{2} = \frac{z+3}{4} \text{ and perpendicular to both straight lines.}$

Watch Video Solution

8. Solve $\left(\sqrt{3}+\sqrt{2}\right)^x+\left(\sqrt{3}-\sqrt{2}\right)^x=10$

9. If $u(x,y)=x^2y+3xy^4, x=e^t$ and y= \sin t, find $\frac{du}{dx}$ and evaluate it at t=0.

