© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL

ENGLISH)

SAMPLE PAPER -15 (UNSOLVED)

Part I Choose The Correct Answer

1. If $A\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$, then $A=$
A. $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$
C. $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$

Answer: C

D Watch Video Solution

2. If $\frac{z-1}{z+1}$ is purely imaginary, then $|z|$ is
A. $\frac{1}{2}$
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

$$
\text { 3. If } z_{1}=a+i b, z_{2}=-a+i b \text { then } z_{1}-z_{2}
$$

lies on
A. real axis

B. imaginary axis

C. the line $y=x$
D. the line $y=-x$

Answer: A

- Watch Video Solution

4. A polynomial equation in x of degree n always has:
A. n distinct roots
B. n real roots
C. n imaginary roots
D. at most one root.

Answer: C

D Watch Video Solution

5. If $\sin ^{-1} x=2 \sin ^{-1} \alpha$ has a solution, then
A. $|\alpha| \leq \frac{1}{\sqrt{2}}$
B. $|\alpha| \geq \frac{1}{\sqrt{2}}$

> C. $|\alpha|<\frac{1}{\sqrt{2}}$
> D. $|\alpha|>\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

6. The
 value
 of
 $\cos ^{-1}(-1)+\tan ^{-1}(\infty)+\sin ^{-1} 1=\ldots .$.

A. $-\pi$
B. $\frac{3 \pi}{2}$
C. 30°
D. 2π

Answer: D

- Watch Video Solution

7. The equation of the circle passing through
$(1,5)$ and $(4,1)$ and touching y-axis is $x^{2}+y^{2}-5 x-6 y+9+\lambda(4 x+3 y-19)=0$
where λ is equal to
А. $0,-\frac{40}{9}$
B. 0
C. $\frac{40}{9}$
D. $\frac{-40}{9}$

Answer: A

D Watch Video Solution

8. The point of contact of the tangent $2 x+3 y+9=0$ to the parabola $y^{2}=8 x$ is:
A. $\left(\frac{a m^{2}}{c}, \frac{b^{2}}{c}\right)$
B. $\left(\frac{a^{2} m}{c}, \frac{b^{2}}{c}\right)$
C. $\left(\frac{-a^{2} m}{c}, \frac{-b^{2}}{c}\right)$
D. $\left(\frac{-a m^{2}}{c}, \frac{-b^{2}}{c}\right)$

Answer: C

D Watch Video Solution

9. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}=\vec{i}$ and $(\vec{a} \times \vec{b})) \times \vec{c}=\lambda \vec{a}+\mu \vec{b} \quad$ then
the value of $\lambda+\mu$ is.
A. 0
B. 1
C. 6
D. 3

Answer: A

D Watch Video Solution

10. The value of
$\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{k} \times \hat{i})+\hat{k} .(\hat{i} \times \hat{j})=\ldots . .$.
A. 1
B. 3
C. -3
D. 0

Answer: B

D Watch Video Solution
11. What is the value of the limit
$\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right) ?$
A. 0
B. 1
C. 2
D. ≤ 2

Answer: A

- Watch Video Solution

12. If $\mathrm{u}(\mathrm{x}, \mathrm{y})=e^{x^{2}+y^{2}}$, then $\frac{\partial u}{\partial x}$ is equal to
A. $e^{x^{2}+y^{2}}$
B. $2 x u$
C. $x^{2} u$
D. $y^{2} u$

Answer: B
13. If $f(x, y)$ is homogeneous function of degree 5 then $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=$
A. f
B. nf
C. $n(n-1)$
D. $n(n+1) f$

Answer: B

D Watch Video Solution
14. The area between $y^{2}=4 x$ and its latus rectum is

> A. $\frac{2}{3}$
> B. $\frac{4}{3}$
> C. $\frac{8}{3}$
> D. $\frac{5}{3}$

Answer: C

D Watch Video Solution

15. If $\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x)$ then
A. $f(2 a-x)=f(x)$
B. $f(a-x)=f(x)$
C. $f(x)=-f(x)$
D. $f(-x)=f(x)$

Answer: A
(Watch Video Solution
16. The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}$ is
A. $x y=k$
B. $y=k \log x$
C. $y=k x$

D. $\log y=k x$

Answer: C
17. P is the amount of certain substanc left in after time t. If the rate of evaporation of the
substance is proportional to the amount remaining, then
A. $P=c e^{k t}$
B. $P=c e^{-k t}$
C. $P=c k t$
D. $P t=c$

Answer: B
18. If $P\{X=0\}=1-P\{X=1\}$. If $E\{X\}=3 \operatorname{Var}(X)$, then $P\{X=0\}$ is

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \\
& \text { B. } \frac{2}{5} \\
& \text { C. } \frac{1}{5} \\
& \text { D. } \frac{1}{3}
\end{aligned}
$$

Answer: D
(Watch Video Solution
19. If the function $f(x)=\frac{1}{12}$ for $a<x<b$, represents a probability density function of a continuous random variable X, then which of the following cannot be the value of a and b ?
A. 0 and 12
B. 5 and 17
C. 7 and 19
D. 16 and 24

Answer: D
20. Which one of the following is incorrect?

For any two propostitions p and q, we have
A. $\neg(p \vee q) \equiv \neg p \wedge \neg q$
B. $\neg(p \wedge q) \equiv \neg p \vee \neg q$
C. $\neg(p \vee q) \equiv \neg p \vee \neg q$
D. $\neg(\neg p) \equiv p$

Answer: C

Part li

1. Find the rank of the matrix $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5\end{array}\right]$ by
reducing it to a row-echelon form.

D Watch Video Solution

2. If $z=x+i y$, find in rectangular form.
$\operatorname{Im}(3 z+4 \bar{z}-4 i)$

D Watch Video Solution
3. Find the value of $\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}(-1)$

D Watch Video Solution

4. Find the equation of the circles whose radius is 4 and whish is concentric with the
circle $x^{2}+y^{2}+2 x-6 y=0$

D Watch Video Solution

5. Find the direction cosines of the normal to
the plane $12 x+3 y-4 z=65$. Also, find the nonparametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin.

D Watch Video Solution

6. Evaluate $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{x^{5}-5 x+3}$

D Watch Video Solution

7. In each of the following cases, determine whether the following function is homogeneous or not. If it is so, find the degree. (i) $f(x, y)=x^{2} y+6 x^{3}+7$
$h(x, y)=\frac{6 x^{2} y^{3}-\pi y^{5}+9 x^{4} y}{2020 x^{2}+2019 y^{2}}$
(iii) $\quad g(x, y, z)=\frac{\sqrt{3 x^{2}+5 y^{2}+z^{2}}}{4 x+7 y}$
$U(x, y, z)=x y+\sin \left(\frac{y^{2}-2 z^{2}}{x y}\right)$

- Watch Video Solution

8. Suppose that $f(x)$ given below represents a probability mass function

x	1	2	3	4	5	6
$f(x)$	c^{2}	$2 c^{2}$	$3 c^{2}$	$4 c^{2}$	c	$2 c$

Find (i) the value of c (ii) Mean and variance.

- Watch Video Solution

9. Verify the

Closure property
10. Determine the number of positive and negative roots of the equation
$x^{9}-5 x^{8}-14 x^{7}=0$.

- Watch Video Solution

Part lif

1. Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone
and that of one woman alone to finish the same work by using matrix inversion method.

D Watch Video Solution

2. If $z=2-2 i$, find the rotation of z by θ radians
in the counter clockwise direction about the
origin when
$\theta=\frac{\pi}{3}$
3. Find the equation of th tangen to the parabola $y^{2}=16 x \quad$ perpendicular to
$2 x+2 y+3=0$

D Watch Video Solution

4. Find the magnidude and direction cosines
of the torque of a force represented by $3 \hat{i}+4 \hat{j}-5 \hat{k}$ about the point with position vector $2 \hat{i}-3 \hat{j}+4 \hat{k}$ acting through a point whose position vector is $4 \hat{i}+2 \hat{j}-3 \hat{k}$.
5. Evaluate $\lim x^{\frac{1}{x-1}}$

$$
x \rightarrow 1
$$

- Watch Video Solution

6. Prove that $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x=\frac{\pi}{8} \log 2$
7. Solve the differential equations:
$\frac{d y}{d x}=e^{x+y}+x^{3} e^{y}$

- Watch Video Solution

8. A lottery with 600 tickets gives one prize of

Rs. 200 , four prizes of Rs. 100 , and six prizes of
Rs. 50. If the ticket costs is Rs. 2, find the expected winning amount of a ticket.

- Watch Video Solution

9. Write the

Conditional statement

D Watch Video Solution

Part Iv

1. In vestigate the values of λ and μ the system
of linear equations $2 x+3 y+5 z=9,7 x+3 y-5 z=8$,
$2 x+3 y+\lambda z=\mu$, have
(i) no solution
(ii) a unique solution
(iii) an infinite number of solutions.

D Watch Video Solution

2. If $z=x+i y$ is complex number such that Im
$\left(\frac{2 z+1}{i z+1}\right)=0$, show that the locus of z is
$2 x^{2}+2 y^{2}+x-2 y=0$.

D Watch Video Solution
3. Prove that the values of $4 \sqrt{-1}$ are $\pm \frac{1}{\sqrt{2}}(1 \pm i)$.

D Watch Video Solution

4. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point.

Find the angle of projection.
5. The overall percentage of passes in a certain examination is 80 . If six candidates appear in the examination what is the probability that at least five pass the examination.

- Watch Video Solution

6. For each of the functions find the f_{x}, f_{y},
and show that $f_{x y}=f_{y x}$.
$f(x, y)=\cos \left(x^{2}-3 x y\right)$

- Watch Video Solution

7. A ladder 17 metre long is leaning against the
wall. The base of the ladder is pulled away
from the wall at a rate of $5 \mathrm{~m} / \mathrm{s}$. When the base of the ladder is 8 metres from the wall.

How fast is the top of the ladder moving down the wall?

