©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

SAMPLE PAPER 03

Part I

1.

$(A B)^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$ then B^{-1}
=
A. $\left[\begin{array}{cc}2 & -5 \\ -3 & 8\end{array}\right]$
B. $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]$

Answer: A

- Watch Video Solution

2. If z is a complex number such that $z \in \mathbb{C} \backslash \mathbb{R}$, and $z+$ $\frac{1}{z} \in \mathbb{R}$, then $|z|$ is
A. 0
B. 1
C. 2
D. 3

Answer: B

(Watch Video Solution

3. Let $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and $4 B=\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3\end{array}\right]$.

If B is the inverse of A, then the value of x is
A. 2
B. 4
C. 3
D. 1

Answer: B
4. If $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$, then $\cos ^{-1} x+\cos ^{-1} y$ is equal to
A. $\frac{2 \pi}{3}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. π

Answer: B
(D) Watch Video Solution
5.
eccentricity
of
the
ellispse
$(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9}$ is
A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{3 \sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

6. The directrix of the parabola $y^{2}=4 x$ is
A. $y=-1$
B. $x=-1$
C. $y=1$
D. $x=1$

Answer: B

(Watch Video Solution

$$
\begin{aligned}
& \text { 7. The angle between the line } \\
& \vec{r}=(\hat{i}+2 \hat{j}-3 \hat{k})+t(2 \hat{i}+\hat{j}-2 \hat{k}) \text { and the plane } \\
& \vec{r} \cdot(\hat{i}+\hat{j})+4=0 \text { is : }
\end{aligned}
$$

A. 0°
B. 30°
C. 45°
D. 90°

- Watch Video Solution

8. The d.c.s. of a vector whose direction ratios are $2,3,-6$ are
A. $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$
B. $\left(\frac{2}{49}, \frac{3}{49}, \frac{-6}{49}\right)$
C. $\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{3}}{7}, \frac{-\sqrt{6}}{7}\right)$
D. $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$

Answer: A

9. A balloon rises straight up at $10 \mathrm{~m} / \mathrm{s}$. An observer is 40 m away from the spot where the balloon left the ground. Find the rate of change of the balloon's angle of elevation in radian per second when the balloon is 30 metres above the ground.
A. $\frac{1}{25}$ radians $/ \mathrm{sec}$
B. $\frac{4}{25}$ radians / sec
C. $\frac{1}{5}$ radians $/ \mathrm{sec}$
D. $\frac{1}{3}$ radians $/ \mathrm{sec}$

Answer: B

D Watch Video Solution

10. The asymptote to the curve $y^{2}(2+x)=x^{2}(6-x)$ is
A. $x=2$
B. $x=-2$
C. $x=6$
D. $x=-6$

Answer: B

- Watch Video Solution

11. The change in the surface area $S=6 x^{2}$ of a cube when the edge length varies from x_{0} to $x_{0}+d x$ is

$$
\text { A. } 12 x_{0}+d x
$$

B. $12 x_{0} d x$
C. $6 x_{0} d x$
D. $6 x_{0}+d x$

Answer: B
(Watch Video Solution
12. The differential of y if $y=\sin 2 x$ is
A. $2 \cos 2 x$
B. $2 \cos 2 x . d x$
C. $-2 \cos 2 x . d x$
D. $\cos 2 x . d x$

Answer: B

- Watch Video Solution

13. \quad The
$\int_{-4}^{4}\left[\tan ^{-1}\left(\frac{x^{2}}{x^{4}+1}\right)+\tan ^{-1}\left(\frac{x^{4}+1}{x^{2}}\right)\right] d x$ is
A. π
B. 2π
C. 3π
D. 4π

Answer: D
14. $\int_{a}^{b} f(x) d x=$
A. $-\int_{a}^{b} f(x) d x=$
B. $-\int_{b}^{a} f(x) d x=$
C. $-\int_{0}^{a} f(x) d x=$
D. $2 \int_{0}^{b} f(x) d x=$

Answer: B

- Watch Video Solution

15. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{x}$ is
A. $\frac{x}{e^{\lambda}}$
B. $\frac{e^{x}}{x}$
C. λe^{x}
D. e^{x}

Answer: B

(Watch Video Solution

16. The differential equation representing the family of curves $y=A \cos (x+B)$, where A and B are parameters, is

> A. $\frac{d^{2} y}{d x^{2}}-y=0$
> B. $\frac{d^{2} y}{d x^{2}}+y=0$
> C. $\frac{d^{2} y}{d x^{2}}=0$
> D. $\frac{d^{2} x}{d y^{2}}=0$

- Watch Video Solution

17. A rod of length $2 l$ is broken into two pieces at random.

The probability density function of the shorter of the two pieces is
$f(x)= \begin{cases}\frac{1}{l} & 0<x \geq l \\ 0 & l \leq x<2 l\end{cases}$
The mean and variance of the shorter of the two pieces are respectively
A. $\frac{l}{2}, \frac{l^{2}}{3}$
B. $\frac{l}{2}, \frac{l^{2}}{6}$
C. $l, \frac{t^{2}}{12}$
D. $\frac{l}{2}, \frac{t^{2}}{12}$

Answer: D

- Watch Video Solution

18. A computer salesperson knows from his past experience that he sells computers to one in every twenty customers
who enter the showroom. What is the probability that he will sell a computer to exactly two of the next three customers?
A. $\frac{57}{20^{3}}$
B. $\frac{57}{20^{2}}$
C. $\frac{19^{3}}{20^{3}}$
D. $\frac{57}{20}$

Answer: A

- Watch Video Solution

19. The operation $*$ defined by $a * b=\frac{a b}{7}$ is not a binary operation on
A. \mathbb{Q}^{+}
B. \mathbb{Z}
C. \mathbb{R}
D. \mathbb{C}
20. If X is a discrete random variable $P(X>a)$ is equal to
A. $P(X<a)$
B. $1-P(X \leq a)$
C. $1-P(X<a)$
D. 0

Answer: A
(Watch Video Solution

1. State the reason for $\cos ^{-1}\left[\cos \left(-\frac{\pi}{6}\right)\right] \neq-\frac{\pi}{6}$

(Watch Video Solution

2. Find the equation of the tangent and normal to the circle
$x^{2}+y^{2}=25$ at $\mathrm{P}(-3,4)$

- Watch Video Solution

3. Determine whether the three vectors
$2 \hat{i}+3 \hat{j}+\hat{k}, \hat{i}-2 \hat{j}+2 \hat{k}$ and $3 \hat{i}+\hat{j}+3 \hat{k}$ are coplanar.

(D) Watch Video Solution

4. Find the intervals of monotonicities and hence find the local extremum for the following functions:
$f(x)=\frac{x}{x-5}$

(D) Watch Video Solution

5. Find the linear approximation for
$f(x)=\sqrt{1+x}, x \geq-1$, at $x_{0}=3$. Use the linear approximation to estimate $f(3.2)$.

- Watch Video Solution

6. Evaluate the following integrals using properties of integration :
$\int_{0}^{2 \pi} \sin ^{4} x \cos ^{3} x d x$

- Watch Video Solution

7. Solve the differential equations:
$\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$

(Watch Video Solution

8. Suppose the amount of milk sold daily at a milk booth is
distributed with a minimum of 200 litres and a maximum of

600 litres with probability density function
$f(x)= \begin{cases}k & 200 \leq x \leq 600 \\ 0 & \text { otherwise }\end{cases}$

Find
the value of k

- Watch Video Solution

9. Let $*$ be defined on R by $(a * b)=a+b+a b-7$. Is $*$
binary on R? If so, find $3 *\left(-\frac{7}{15}\right)$.

D Watch Video Solution
10. Examine for the rational roots of
$x^{8}-3 x+1=0$

D Watch Video Solution

Part lii

1. Solve the following system of linear equaltions, using matrix in inversion method: $5 x+2 y=3,3 x+2 y=5$.

- Watch Video Solution

2. Given $\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \ldots\left(x_{n}+i y_{n}\right)=\mathrm{a}+\mathrm{ib}$, show that

$$
\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)\left(x_{3}^{2}+y_{3}^{2}\right) \ldots\left(x_{n}^{2}+y_{n}^{2}\right)=a^{2}+b^{2}
$$

- Watch Video Solution

3. Find the sum of squares of roots of the equation
$2 x^{4}-8 x^{3}+6 x^{2}-3=0$

- Watch Video Solution

4. Find the non-parametric form of vector equation, and

Cartesian equation vector equation, and Cartesian equation of the plane passing through the point ($0,1,-5$) and parallel

$$
\begin{aligned}
& \text { to } \\
& \text { the } \\
& \text { straight } \\
& \text { lines } \\
& \vec{r}=(\hat{i}=2 \hat{j}-4 \hat{k})+s(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
& \text { and } \\
& \vec{r}=(\hat{i}=3 \hat{j}-4 \hat{k})+t(\hat{i}+\hat{j}+\hat{k})
\end{aligned}
$$

- Watch Video Solution

5. Find ' C ' of Lagrange's mean value theorem for the function $f(x)=x^{3}-5 x^{2}-3 x$ in $[1,3]$
6. Using differentials, find the approximate value of each of the up to 3 places of decimal.
$(255)^{\frac{1}{4}}$

- Watch Video Solution

7. Find the area of the region bounded by the line $6 x+5 y=30, x$-axis and the lines $x=-1$ and $x=3$.

- Watch Video Solution

8. A six sided die is marked '2' on one face, ' 3 ' on two of its
faces, and '4' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the
values of the random variable and number of points in its inverse images.

- Watch Video Solution

9. Check whether the statement $p \rightarrow(q \rightarrow p)$ is a tautology or a contradiction without using the truth table.

- Watch Video Solution

10. Solve $\left(1-x^{2}\right) \frac{d y}{d x}+2 x y=x \sqrt{1-x^{2}}$

- Watch Video Solution

1. Solve the following system of homogeneous equations.
$3 x+2 y+7 z=0,4 x-3 y-2 z=0,5 x+9 y+23 z=0$

D Watch Video Solution

2. Two cards are drawn with replacement from a well shufflied deck of 52 cards. Find the mean and variance for the number of aces .

- Watch Video Solution

3. Show that $\left(\frac{19+9 i}{5-3 i}\right)^{15}-\left(\frac{8+i}{1+2 i}\right)^{15}$ is purely imaginary
4. Define an operation * on Q as follows: $a \cdot b=\left(\frac{a+b}{2}\right), a, b \in Q . \quad$ Examine the closure, communative, and associative properties satisfied by

- on Q.

Watch Video Solution

5. Solve $(x-3)(x-6)(x-1)(x+2)+54=0$.

- Watch Video Solution

6. Find the local extrema of the function $f(x)=4 x^{6}-6 x^{4}$
7. Prove thate
$\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{7}{24}\right)=\tan ^{-1}\left(\frac{1}{2}\right)$

(Watch Video Solution

8. If $v(x, y)=\log \left(\frac{x^{2}+y^{2}}{x+y}\right)$, prove that
$x \frac{\partial v}{\partial x}+y \frac{\partial v}{\partial y}=1$.

(Watch Video Solution

9. Find the equations of the two tangents that can be drawn from $(5,2)$ to the ellispse $2 x^{2}+7 y^{2}=14$
10. Find the coordinates of the foot of the perpendicular and length of the perpendicular from the point $(4,3,2)$ to the plane $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=2$.

- Watch Video Solution

11. Solve
$(x+y)^{2} \frac{d y}{d x}=a^{2}$

- Watch Video Solution

12. A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that
has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police deteremine with a radar that the distance between them and the cae is increasing at $20 \mathrm{~km} / \mathrm{hr}$. If the jeep is moving at $60 \mathrm{~km} / \mathrm{hr}$ at the instant of measurement, what is the speed of the car?

- Watch Video Solution

13. Let $w(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}(x, y, z) \neq(0,0,0)$.

Show that $\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}=0$

- Watch Video Solution

14. Evaluate the following :
$\int_{0}^{\frac{\pi}{2}} \frac{e^{-\tan x}}{\cos ^{6} x} d x$

- Watch Video Solution

