© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - FULL MARKS MATHS (TAMIL ENGLISH)

TWO DIMENSIONAL ANALYTICAL GEOMETRY-II

Example

1. Find the general equation of a circle with centre $(-3,-4)$ and radius 3 units.

- Watch Video Solution

2. Find the equation of the circle described on the chord $3 \mathrm{x}+\mathrm{y}+5=0$ of the circle $x^{2}+y^{2}=16$ as diameter.

D Watch Video Solution

3. Determine whether $x+y-1=0$ is the equation of a diameter of the circle $x^{2}+y^{2}-6 x+4 y+c=0$ for all possible values of c.

- Watch Video Solution

4. Find the general equation of the circle whose diameter is the line segment joining the points ($-4,-2$) and (1,1)

- Watch Video Solution

5. Examine the position of the point $(2,3)$ with respect to the circle $x^{2}+y^{2}-6 x-8 y+12=0$.

- Watch Video Solution

6. The line $3 x+4 y-12=0$ meets the coordinate axes at A and B. find the equation of the circle drawn on $A B$ as diameter.

- Watch Video Solution

7. A line $3 x+4 y+10=0$ cuts a chord of length 6 units on a circle with centre of the circle $(2,1)$. Find the equation of the circle in general form.

- Watch Video Solution

8. A circle of radius 3 units touches both the axes. Find the equations of all possible circles formed in the general form.

- Watch Video Solution

9. Find the centre and radius of the circle
$3 x^{2}+(a+1) y^{2}+6 x-9 y+a+4=0$.

- Watch Video Solution

10. Find the equation of the circle passing through the points
(1,1), (2,-1), and (3,2).

- Watch Video Solution

11. Find the equation of the tangent and normal to the circle $x^{2}+y^{2}=25$ at $\mathrm{P}(-3,4)$

- Watch Video Solution

12. If $y=4 x+c$ is a tangent to the circle $x^{2}+y^{2}=9$, find c .

- Watch Video Solution

13. A road bridge over an irrigation canal have two semi circular vents each with a span of 20 m and the supporting pillars of
width $2 m$. Use figure to write the equations that represent the
semi verticular vents.

- Watch Video Solution

14. Find the length of the Latus rectum of the parabola
$y^{2}=4 a x$.

D Watch Video Solution

15. Find the length of Latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
16. Find the equation of the parabola with vertex ($-1,-2$), axis parallel to y-axis and passing through $(3,6)$.

- Watch Video Solution

17. The equation of the ellipse with foci $(\pm 2,0)$ vertices $(\pm 3,0)$ is:

- Watch Video Solution

18. Find the equation of the ellipse whose eccentricity is $\frac{1}{2}$, one of the foci is $(2,3)$ and a directrix is $x=7$. Also find the length of the major and minor axes of the ellipse.

- Watch Video Solution

19. For the ellipse $4 x^{2}+y^{2}+24 x-2 y+21=0$, find the centre, vertices, and the foci. Also prove that the length of latus rectum is 2 .

D Watch Video Solution

20. Find the equation of the hyperbola with vertices $(0, \pm 4)$
and foci $(0, \pm 6)$.

- Watch Video Solution

21. Find the vertices, foci for the hyperbola $9 x^{2}-16 y^{2}=144$.
22. Find the centre, foci, and eccentricity of the hyperbola $11 x^{2}-25 y^{2}-44 x+50 y-256=0$

D Watch Video Solution

23. The orbit of Halley's comet is an ellipse 36.18 astronomical units long and 9.12 astronomical units wide. Find its eccentricity.

- Watch Video Solution

24. Identify the type of the conic for the following equations:
25. $16 y^{2}=-4 x^{2}+64$
26. $x^{2}+y^{2}=-4 x-y+4$
27. $x^{2}-2 y=x+3$
28. $4 x^{2}-9 y^{2}-16 x+18 y-29=0$

- Watch Video Solution

25. Find the equations of tangent and normal to the parabola
$x^{2}+6 x+4 y+5=0$ at $(1,-3)$.

- Watch Video Solution

26. Find the equations of tangent and normal to the ellipse
$x^{2}+4 y^{2}=32$ when $\theta=\frac{\pi}{4}$.

D Watch Video Solution

27. A semielliptical archway over a one-way road has height of 3 m and a width of 12 m . The truck has a width of 3 m and a height of 2.7 m . Will the truck clear the opening of the archway?

- Watch Video Solution

28. The maximum and minimum distances of the Earth from the

Sun respectively are $152 \times 10^{6} \mathrm{~km}$ and $94.5 \times 10^{6} \mathrm{~km}$. the Sun is at one focus of the elliptical orbit. Find the distance from the
sun to the other focus.
29. A concrete bridge is designed as a parabolic arch. The road over bridge is 60 m long and the maximum height of the arch is 15 m . What is the equation of the parabola.

- Watch Video Solution

30. The parabolic communication antenna has a focus at 3 m distance from the vertex of the antenna. Find the width of the antenna 8 m from the vertex.

(D) Watch Video Solution

31. The equation $y=\frac{1}{32} x^{2}$ models cross sections of parabolic mirrors that are used for solar energy. There is a heating tube
located at the focus of each parabola, how high is this tube located above the vertex of the parabola?

- Watch Video Solution

32. A search light has a parabolic reflector (has a cross section that forms a 'bowl'). The parabolic bowl is 40 cm wide from rim
to rim and 30 cm deep. The bulb is located at the focus.
(1) what is the equation of the parabola used for reflector?
(2) How far from the vertex is the bulb to be placed so that the maximum distance covered?

- Watch Video Solution

33. An equation of the elliptical part of an optical lens system is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. The parabolic part of the system has a focus in common with the right focus of the ellipse. The vertex of the parabola is at the origin and the parabola opens to the right. determine the equation of the parabola
34. A room 34 m long is constructed to a whispering gallery. The room has an elliptical ceiling, as shown in figure. If the maximum height of the ceiling is 8 m , determine where the foci are located

- Watch Video Solution

35. If the equation of the ellipse is $\frac{(x-11)^{2}}{484}+\frac{y^{2}}{64}=1$ (x and y are measured in centimeters) where to the nearest centimeter, should the patient's kidney stone be placed so that the reflected sound hits the kidney stone?
36. Two coast guard stations are located 600 km apart at points
$A(0,0)$ and $B(0,600)$. A distress signal from a ship at P is received at slightly different times by two stations. It determined that the ship is 200 km farther from station A than it is from station B. Determine the equation of hyperbola that passes through the location of the help.

- Watch Video Solution

37. Certain telescopes contain both parabolic mirror and a hyperbolic mirror. In the telescope shown in figure the parabola and hyperbola share focus F_{1} which is 14 m above the vertex of the parabola. The hyperbola's second focus F_{2} is 2 m above the parabola's vertex. The vertex of the hyperbolic mirror is 1 m below F_{1}. Position a coordinate systemm with the origin at the
centre of the hyperbola and with the foci on the y-axis. then find the equation of the hyperbola.

- Watch Video Solution

Exercise 51

1. Obtain the equation of the circles with radius 5 cm and touching x-axis at the origin in general form.

- Watch Video Solution

2. Find the equation of the circlue with centre (2,-1) and passing through the point (3,6) in standard form.
3. Find the equation of circles that touch both the axes and pass through ($-4,-2$) in general form.

- Watch Video Solution

4. find the equation of the circle with centre (2,3) and passing through the intersection of the lines $3 x-2 y-1=0$ and $4 x+y-27=0$

- Watch Video Solution

5. Obtain the equation of the circle for which $(3,4)$ and ($2,-7$) are the ends of a diameter.

- Watch Video Solution

6. Find the equation of the circle through the points (1,0), ($-1,0$) and (0,1)

- Watch Video Solution

7. A circle of area 9π square units has two of its diameters along the lines $x+y=5$ and $x-y=1$. Find the equation of the circle.

D Watch Video Solution

8. If $y=2 \sqrt{2} x+c$ is a tangent to the circle $x^{2}+y^{2}=16$, find the value of c.

- Watch Video Solution

9. Find the equation of the tengent and normal to the circle $x^{2}+y^{2}-6 x+6 y-8=0 a t(2,2)$

- Watch Video Solution

10. Determine whether the points ($-2,1$) , $(0,0)$ and ($-4,-3$) lie outside, on or inside the circle $x^{2}+y^{2}-5 x+2 y-5=0$

- Watch Video Solution

11. Find centre and radius of the following circles.
(i) $x^{2}+(y+2)^{2}=0$
(ii) $x^{2}+y^{2}+6 x-4 y+4=0$
(iii) $x^{2}+y^{2}-x+2 y-3=0$
(iv) $2 x^{2}+2 y^{2}-6 x+4 y+2=0$
12. If the equation $3 x^{2}+(3-p) x y+q y^{2}-2 p x=8 p q$ represents a circle, find p and q. Also determine the centre and radius of the centre.

- Watch Video Solution

Exercise 52

1. Find the equation of the parabola in each of the case given below:
(i) Focus $(4,0)$ and direction $x=-4$.
(ii) passes through ($2,-3$) and symmetric about y-axis.
(iii) vertex ($1,-2$) and forus (4,-2)
(iv) end points of latus rectun ($4,-8$) and (4,8)

- Watch Video Solution

2. Find the equation of the ellipse in each of the cases given below :
(i) foci $(-+3,0), e=\frac{1}{2}$
(ii) foci $(0,-+4)$ and end points of major axis are $(0-+5)$
(iii) length of lagtus rectum 8 , eccentricity $=\frac{3}{5}$ and major axis on x-axis .
(iv) length of latus rectum 4, distance between foci $4 \sqrt{2}$ and major axis as y-axis.

D Watch Video Solution

3. Find the equation of the hyperbola in each of the cases given below:
(i) foci $(-+2,0)$ eccentricity $=\frac{3}{2}$
(ii) Centre (2,1) one of the foci $(8,1)$ and corresponding directrix $x=4$.
(iii) Passing through ($5,-2$) and length of the transverse axis along x axis and of length 8 units.

- Watch Video Solution

4. Find the vertex, focus, equation of directrix, and length of latus rectam of the following :
(i) $y^{2}=16 x$ (ii) $x^{2}=24 y$
(iii) $y^{2}=-8 x$ (iv) $x^{2}-2 x+8 y+17=0$
(v) $y^{2}-4 y-8 x+12=0$
5. Identify the type of conic and find centre, foci, vertices and directries of each of the following :
$\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
(ii) $\frac{x^{2}}{3}+\frac{y^{2}}{10}=1$
(iii) $\frac{x^{2}}{25}-\frac{y^{2}}{144}=1$
(iv) $\frac{y^{2}}{16}-\frac{x^{2}}{9}=1$

D Watch Video Solution

6. Prove that the length of the latusrection of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{2 b^{2}}{a}$

- Watch Video Solution

7. show that the absolute value of the focal distances of any point P on the hyperbola in the length of its transverse axis.

- Watch Video Solution

8. Identify the type of conic and find centre, foci, vertices, and directices of each of the following:

$$
\frac{(x+1)^{2}}{100}+\frac{(y-2)^{2}}{64}=1
$$

- Watch Video Solution

Exercise 53

1. Identify the type of conic section for each of the equations
2. $2 x^{2}-y^{2}=7$
3. $3 x^{2}+3 y^{2}-4 x+3 y+10=0$
4. $3 x^{2}+2 y^{2}=14$
5. $x^{2}+y^{2}+x-y=0$
6. $11 x^{2}-25 y^{2}-44 x+50 y-256=0$
7. $y^{2}+4 x+3 y+4=0$

- Watch Video Solution

2. Identify the type of conic section for each of the equations
3. $2 x^{2}-y^{2}=7$
4. $3 x^{2}+3 y^{2}-4 x+3 y+10=0$
5. $3 x^{2}+2 y^{2}=14$
6. $x^{2}+y^{2}+x-y=0$
7. $11 x^{2}-25 y^{2}-44 x+50 y-256=0$
8. $y^{2}+4 x+3 y+4=0$
9. Identify the type of conic section for each of the equations
10. $2 x^{2}-y^{2}=7$
11. $3 x^{2}+3 y^{2}-4 x+3 y+10=0$
12. $3 x^{2}+2 y^{2}=14$
13. $x^{2}+y^{2}+x-y=0$
14. $11 x^{2}-25 y^{2}-44 x+50 y-256=0$
15. $y^{2}+4 x+3 y+4=0$

- Watch Video Solution

4. Identify the type of conic section for each of the equations
5. $2 x^{2}-y^{2}=7$
6. $3 x^{2}+3 y^{2}-4 x+3 y+10=0$
7. $3 x^{2}+2 y^{2}=14$
8. $x^{2}+y^{2}+x-y=0$
9. $11 x^{2}-25 y^{2}-44 x+50 y-256=0$
10. $y^{2}+4 x+3 y+4=0$

D Watch Video Solution

5. Identify the type of conic section for each of the equations
6. $2 x^{2}-y^{2}=7$
7. $3 x^{2}+3 y^{2}-4 x+3 y+10=0$
8. $3 x^{2}+2 y^{2}=14$
9. $x^{2}+y^{2}+x-y=0$
10. $11 x^{2}-25 y^{2}-44 x+50 y-256=0$
11. $y^{2}+4 x+3 y+4=0$

D Watch Video Solution

6. Identify the type of conic section for each of the equations
7. $2 x^{2}-y^{2}=7$
8. $3 x^{2}+3 y^{2}-4 x+3 y+10=0$
9. $3 x^{2}+2 y^{2}=14$
10. $x^{2}+y^{2}+x-y=0$
11. $11 x^{2}-25 y^{2}-44 x+50 y-256=0$
12. $y^{2}+4 x+3 y+4=0$

- Watch Video Solution

Exercise 54

1. Find the equations of the two tangents that can be drawn from $(5,2)$ to the ellispse $2 x^{2}+7 y^{2}=14$
2. Find the equations of tangents to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{64}=1$ which are parallelto $10 x-3 y+9=0$

- Watch Video Solution

3. Show that the line $x-y+4=0$ is a tangents to the ellipse $x^{2}+3 y^{2}=12$. Also find the coordinates of the points of contact.

- Watch Video Solution

4. Find the equation of th tangen to the parabola $y^{2}=16 x$ perpendicular to $2 x+2 y+3=0$
5. Find the equation of the tangent at $t=2$ to the parabola $y^{2}=8 x$.

- Watch Video Solution

6. Find the equations of the tangent and normal to hyperbola $12 x^{2}-9 y^{2}=108$ at $\theta=\frac{\pi}{3}$.

- Watch Video Solution

7. Prove that the point of intersection of the tangents at t_{1} and t_{2} on the parabola $y^{2}=4 a x$ is (at $\left.1 \mathrm{t} 2, \mathrm{a}(\mathrm{t} 1+\mathrm{t} 2)\right)$

- Watch Video Solution

8. if the normal at the point t_{1} on the parabola $y^{2}=4 a x$ meets the parabola again in the point t_{2} then prove that $t_{2}=-\left(t_{1}+\frac{2}{t_{1}}\right)$

- Watch Video Solution

Exercise 55

1. A bridge has a parabolic arch that is 10 m high in the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre, on either sides.
2. A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16 m , and the height at the edge of the road must be sufficient for a truck 4 m high to clear if the highest point of the opening is to be 5 m approximately. How wide must the opening be ?

- Watch Video Solution

3. At a water fountain, water attains a maximum height of 4 m at horizontal distance of 0.5 m from its origin. If the path of water is a parabola, find the height of water at a horizontal distance of 0.75 m from the point or origin.

- Watch Video Solution

4. An engineer designs a satellite dish with a parabolic cross
section. The dish is 5 m wide at the opening, and the focus is placed 1.2 m from the vertex.
(a) Position a coordinate system with the origin at the vertex and the x-axis on the parabola 's axis of symmetry and find an equation of the parabola.
(b) find the depth of the satellite dish at the vertex.

(D) Watch Video Solution

5. Parabolic cable of a 60 m portion of the roadbed of a suspension bridge are positioned as shown below. Vertical

Cables are to be spaced every 6 m along this portion of the roadbed. Calculate the lengths of first two of these vertical cables from the vertex.
6. Cross section of a Nuclear cooling towar is in the shape of a hyperbola with equation $\frac{x^{2}}{30^{2}}-\frac{y^{2}}{44^{2}}=1$. The towar is 150 m tall and the distance from the top of the towar to the centre of the hyperbola is half the distance from the base of the towar to the centre of the hyperbola. Find the diameter of the top and base of the tower.

- Watch Video Solution

7. A rod of length 1.2 m moves with its ends always touching the coordinate axes. The locus of a point Pon the rod, which is 0.3 m from the end in contact with x-axis is an ellipse. Find the eccentricity.

D Watch Video Solution

8. Assume that water issuing from the end of a horizontal pipe.
7.5 m above the ground describes a parabolic path. The vertex of the parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 m below the line of the pipe . At a position 2.5 m below the line of the pipe, the flow of water has curved outward 3 m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground ?

- Watch Video Solution

9. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point. Find the angle of projection.
10. Points A and B are 10 km apart and it is determined from the sound of an explosion heard at those points at different times that the location of the explosion is 6 km closer to A than B . Show that the location of the explosion is restricted to a particular curve and find an equation of it.

- Watch Video Solution

Exercise 56

1. The equation of the circle passing through $(1,5)$ and $(4,1)$ and touching y-axis is
$x^{2}+y^{2}-5 x-6 y+9+\lambda(4 x+3 y-19)=0 \quad$ where λ is equal to
A. $0,-\frac{40}{9}$
B. 0
C. $\frac{40}{9}$
D. $\frac{-40}{9}$

Answer: A

D Watch Video Solution

2. The eccentricity of the yhyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
A. $\frac{4}{3}$
B. $\frac{4}{\sqrt{3}}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{3}{2}$

Answer: C

- Watch Video Solution

3. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points if
A. $15<m<65$
B. $35<m<85$
C. $-85<m<-35$
D. $-35<m<15$

Answer: D

4. The length of the diameter of the circle which touches the x axis at the point $(1,0)$ and passes through the point $(2,3)$
A. $\frac{6}{5}$
B. $\frac{5}{3}$
C. $\frac{10}{3}$
D. $\frac{3}{5}$

Answer: C

- Watch Video Solution

5. The radius of the circle

$$
3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0
$$

A. 1
B. 3
C. $\sqrt{10}$
D. $\sqrt{11}$

Answer: C

- Watch Video Solution

6. The centre of the circle inscribed in a square formed by the lines $x^{2}-8 x+12=0$ and $y^{2}-14+45=0$ is
A. $(4,7)$
B. $(7,4)$
C. $(9,4)$
D. $(4,9)$

- Watch Video Solution

7. The equation of the normal to the circle $x^{2}+y^{2}-2 x-2 y+1=0$ which is parallel to the lines $2 \mathrm{x}+4 \mathrm{y}$ $=3$ is
A. $x+2 y=3$
B. $x+2 y+3=3$
C. $2 x+4 y+3=0$
D. $x-2 y+3=0$

Answer: A

8. If $P(x, y)$ be any point on $16 x^{2}+25 y^{2}=400$ with foci $F_{1}(3,0)$ and $F_{2}(-3,0)$ then $P F_{1}+P F_{2}$ is
A. 8
B. 6
C. 10
D. 12

Answer: C

- Watch Video Solution

9. The radius of the circle passing through the point $(6,2)$ two of whose diameter are $x+y=6$ and $x+2 y=4$ is
B. $2 \sqrt{5}$
C. 6
D. 4

Answer: B

D Watch Video Solution

10. The area of quardrilateral formed with foci of the hyperbolas
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ is
A. $4\left(a^{2}+b^{2}\right)$
B. $2\left(a^{2}+b^{2}\right)$
C. $a^{2}+b^{2}$
D. $\frac{1}{2}\left(a^{2}+b^{2}\right)$

- Watch Video Solution

11. If the normals of the paralbola $y^{\wedge} 2=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{\wedge}(2)+$ $(y+2)^{\wedge}(2)=r^{\wedge}(2)$ then the value of $r^{\wedge}(2)$ is
A. 2
B. 3
C. 1
D. 4

Answer: A

12. If $\mathrm{x}+\mathrm{y}=\mathrm{k}$ is a normal to the parabola $y^{2}=12 x$ then the value of k is
A. 3
B. -1
C. 1
D. 9

Answer: D

- Watch Video Solution

13. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse
E_{2} passing through the point $(0,4)$ circumscribes the rectangle R. The eccentricity of the ellispe is
A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: C

D Watch Video Solution

14. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}$ parallel to the straight line $2 x-y=1$. One of the points of contact of tangents on the hyperbola is `
А. $\left(\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$
B. $\left(\frac{-9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
C. $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
D. $(3 \sqrt{3},-2 \sqrt{2})$

Answer: C

- Watch Video Solution

15. The equation of the circle passing through the foci ellispe $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ having centre at $(0,3)$ is
A. $x^{2}+y^{2}-6 y-7=0$
B. $x^{2}+y^{2}-6 y+7=0$
C. $x^{2}+y^{2}-6 y-5=0$
D. $x^{2}+y^{2}-6 y+5=0$

- Watch Video Solution

16. Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centered at $(0, y)$ passing through the origin and touching the circle C externally. Then the radius of T is equal to
A. $\frac{\sqrt{3}}{\sqrt{2}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: D

- Watch Video Solution

17. Consider an ellispe whose centre is of the origin and its major axis is along x-axis. If its eccentiricity is $\frac{3}{5}$ and the distance between its foci is 6 , then the area of the quadrilateral insricbed in the ellipse with diagonals as major and minor axis of the ellipse is
A. 8
B. 32
C. 80
D. 40

Answer: D

- Watch Video Solution

18. Area of the greatest rectangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. 2 ab
B. $a b$
C. $\sqrt{a b}$
D. $\frac{a}{b}$

Answer: A

- Watch Video Solution

19. An ellipse has $O B$, as semi minor axis, F and F ' its foci and the angle FBF' is a right angle. Then the eccentricity of the ellipse is :
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{\sqrt{3}}$

Answer: A

- Watch Video Solution

20. The eccentricity of the ellispse $(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9}$ is
A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{3 \sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

D Watch Video Solution

21. If the two tangents drawn from a point P to the parabola $y^{2}=4 x$ are at right angles then the locus of P is
A. $2 x+1=0$
B. $x=-1$
C. $2 x-1=0$
D. $x=1 \mathrm{~b}$

Answer:

- Watch Video Solution

22. The circle passing through $(1,-2)$ and touching the axis of x at $(3,0)$ passing through the point
A. $(-5,2)$
B. $(2,-5)$
C. $(5,-2)$
D. $(-2,5)$

Answer: C

D Watch Video Solution

23. The locus of a point whose distance from $(-2,0)$ is $\frac{2}{3}$ times its distance from the line $x=\frac{-9}{2}$ is
A. a parabola
B. a hyperbola
C. an ellipse
D. a circle

Answer: C

- Watch Video Solution

24. The values of m for which the lines $y=m x+2 \sqrt{5}$ touches the hyperbola $16 x^{2}-9 y^{2}=144$ are the roots of $x^{2}-(a+b) x-4=0$ then the value of $(a+b)$ is
A. 2
B. 4
C. 0
D. -2

Answer: C

25. If the coordinates at one end of a diameter of the circle $x^{2}+y^{2}-8 x-4 y+c=0$ are $(11,2)$ the coordinates of the other end are
A. $(-5,2)$
B. $(-3,2)$
C. $(5,-2)$
D. $(-2,5)$

Answer: B

D Watch Video Solution

Additional Question Solved

1. find the equation of the circle with centre $(2,3)$ and passing through the intersection of the lines $3 x-2 y-1=0$ and $4 x+y-27=0$

- Watch Video Solution

2. Find the equation of a circle of radius 5 whose centre lies on x axis and which passes through the point $(2,3)$.

- Watch Video Solution

3. Find the centre and radius of the following circles:

$$
x^{2}+y^{2}-2 x+4 y-4=0 \text { and } 2 x^{2}+2 y^{2}+16 x-28 y+32=0
$$

. Also find the ratio of their diameters.
4. Find the equation of the circles whose radius is 4 and whish is concentric with the circle $x^{2}+y^{2}+2 x-6 y=0$

D Watch Video Solution

5. Show that the four points $(1,0),(2,-7),(8,1)$ and $(9,-6)$ are concyclic.

- Watch Video Solution

6. Find the equation of a circle which passes through the points
(1,-2) and (4,-3) and whose centre lies on the line $3 x+4 y=0$
7. Find the equation (s) of the circle passing through the points
$(1,1)$ and (2,2) and whose radius 1 .

- Watch Video Solution

8. Find the equation of the ellipse if centres is $(3,-4)$ one of the foci is $(3+\sqrt{3},-4)$ and $e=\frac{\sqrt{3}}{2}$

- Watch Video Solution

9. Find the equation of the hyperbola if centre ($1,-2$), length of the transverse axis is $8, e=\frac{5}{4}$ and the transverse axis is parallel to X -axis.
10. Find axis, vertex focus and equation of directrix for $y^{2}+8 x-6 y+1=0$

D Watch Video Solution

11. Find axis, Vertex, focus and equation of directrix for $x^{2}-6 x-12 y-3=0$.

- Watch Video Solution

12. Find the centre, eccentricity, foci, vertices of ellipse

$$
x^{2}+4 y^{2}-8 x-16 y-68=0
$$

- Watch Video Solution

13. Find the eccentricity, centre, foci, vertices of $9 x^{2}+4 y^{2}=36$

D Watch Video Solution

14. Identify the type of conic section for each of the following equations:
$x^{2}-4 y^{2}+6 x+16-11=0$

- Watch Video Solution

15. Find the eccentricity, centre, foci and vertices of the following hyperbolas,
$x^{2}-3 y^{2}+6 x+6 y+18=0$

- Watch Video Solution

16. Identify the type of conic section for each of the following equations:
$x^{2}-4 y^{2}+6 x+16-11=0$

D Watch Video Solution

17. Identify the type of conic section for each of the following equations:
$y^{2}-8 y+4 x-3=0$

- Watch Video Solution

18. Identify the type of conic section for each of the following equations:
$4 x^{2}-9 y^{2}=36$
19. Identify the type of conic section for each of the following equations:
$16 x^{2}+25 y^{2}=400$

D Watch Video Solution

20. Identify the type of conic section for each of the following
equations:
$16 x^{2}+9 y^{2}+32 x-36 y-92=0$

- Watch Video Solution

21. Identify the type of conic section for each of the following equations:

$$
x^{2}+4 y^{2}-8 x-16 y-68=0
$$

- Watch Video Solution

22. Identify the type of conic section for each of the following equations:
$x^{2}+y^{2}-4 x+6 y-17=0$

- Watch Video Solution

23. Find the equations of the tangent and normal to the parabolas: $x^{2}+2 x-4 y+4=0$ at $(0,1)$

- Watch Video Solution

24. Find the equations of the tangent and normal to the parabola $y^{2}=8 x$ at $t=\frac{1}{2}$

- Watch Video Solution

25. Find the equations of the tangent: to the parabola $y^{2}=16 x$, parallel to $3 x-2 y+5=0$

- Watch Video Solution

26. Find the equations of the tangents: to the parabola $4 x^{2}-y^{2}=64$ which are parallel to $10 x-3 y+9=0$.

- Watch Video Solution

27. Find the equations of the tangents from the point $(2,-3)$ to the parabola $y^{2}=4 x$.

- Watch Video Solution

28. Find the equation of the two tangents from the point $(1,2)$ to the hyperbola $2 x^{2}-3 y^{2}=6$

- Watch Video Solution

29. Prove that the line $5 x+12 y=9$ touches the hyperbola $x^{2}-9 y^{2}=9$ and find the point of contact.

- Watch Video Solution

30. Show that the line $x-y+4=0$ is a tangents to the ellipse $x^{2}+3 y^{2}=12$. Also find the coordinates of the points of contact.

- Watch Video Solution

31. If a parabolic reflector is 20 cm in diameter and 5 cm deep, then its focus is

- Watch Video Solution

32. The focus of a parabolic mirror is at a distance of 8 cm from its centre (vertex). If the mirror 25 cm deep, find the diameter of the mirror.
33. A cable of a suspension bridge is in the form of a parabola whose span is 40 m . The road way is 5 m below the lowest point of the cable. If an extra support is provided across the cable 30 m above the ground level. Find the length of the support if the height of the pillars are 55 mts .

- Watch Video Solution

34. A kho - kho player in a practice sesssion while running realises that the sum of the distances from the two kho-kho poles from him is always 8 m . Find the equation of the path traced by him of the distances between the poles is 6 m .
35. The parabola $y^{2}=4 a x$ passes through the point $(2,-6)$, the the length of its latus rectum is
A. 9
B. 16
C. 18
D. 6

Answer: C

- Watch Video Solution

36. The vertex of the parabola $x^{2}+12 x-9 y=0$ is \ldots
A. $(6,-4)$
B. $(-6,4)$
C. $(6,4)$
D. $(-6,-4)$

Answer: D

- View Text Solution

37. The length of the major axis of an ellipse is three times the length of minor axis, its eccentricity is
A. $\frac{1}{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{2 \sqrt{2}}{3}$
38. The eccentricity of the ellipse $9 x^{2}+4 y^{2}=36$ is \ldots
A. $\sqrt{\frac{5}{3}}$
B. $\sqrt{\frac{3}{5}}$
C. $\frac{\sqrt{3}}{5}$
D. $\frac{\sqrt{5}}{3}$

Answer: D

D View Text Solution

39. S and T are the foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and B is an end of the minor axis. If STB is an equilateral triangle, the eccentricity of the ellipse is ...
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{\sqrt{3}}{2}$

Answer: C

D Watch Video Solution

40. Find the sum of the focal distances of any point on the ellipse $9 x^{2}+16 y^{2}=144$.
A. 32
B. 18
C. 16
D. 8

- Watch Video Solution

41. If the eccentricities of the two ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and equal , then the value $\frac{a}{b}$, is
A. $\frac{5}{13}$
B. $\frac{6}{13}$
C. $\frac{13}{5}$
D. $\frac{13}{6}$

Answer: C

42. Equation of the hyperbola, whose eccentricity $\frac{3}{2}$ and foci at $(\pm 2,0)$ is \ldots
A. $\frac{x^{2}}{4}-\frac{y^{2}}{5}=\frac{4}{9}$
B. $\frac{x^{2}}{9}-\frac{y^{2}}{9}=\frac{4}{9}$
C. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
D. None of these

Answer: A

D View Text Solution

43. If e_{1} is the eccentricity of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ and if e_{2} is the eccentricity of the hyperbola $9 x^{2}-16 y^{2}=144$, then $e_{1} e_{2}$ is.....
A. $\frac{16}{25}$
B. 1
C. Greater than 1
D. Less than $\frac{1}{2}$

Answer: B

D Watch Video Solution

44. The point of intersection of the tangent at $t_{1}=t$ and $t_{2}=3 t$ to the parabola $y^{2}=8 x$ is \ldots
A. $\left(6 t^{2}, 8 t\right)$
B. $\left(8 t, 6 t^{2}\right)$
C. $\left(t^{2}, 4 t\right)$
D. $\left(4 t, t^{2}\right)$
