© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

ATOMIC AND NUCLEAR PHYSICS

Solved Examples

1. The radius of the $5^{t h}$ orbit of hydrogen atom
is $13.25 \AA$. Calculate the wavelength of the
electron in the $5^{t h}$ orbit.

- Watch Video Solution

2. Find the (i) angular momentuum (ii) velocity of the electron in the $5^{t h}$ orbit of hydrogen atom
$\left(h=66 \times 10^{-34} \mathrm{Js}, \mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}\right)$

D Watch Video Solution
3. (a)Show that the ratio of velocity of an electron in the first Bohr orbit to the speed of
light c is a dimensionless number.
(b) Compute the velocity of electrons in ground state, first excited state and second excited state in Bohr atom model.

- Watch Video Solution

4. The Bohr atom model is derived with the assumption that the nucleus of the atom is
stationary and only electrons revolve around
the nucleus. Suppose the nucleus is also in motion, then calculate the energy of this new system.

D Watch Video Solution

5. Suppose the energy of a hydrogen- like atom is given as $E_{n}=\frac{-54.4}{n^{2}} \mathrm{eV}$ where $n \in N$. Calculate the following:
(a) Sketch the energy levels for this atom and compute its atomic number.
(b) If the atom is in ground state, compute its first excitation potential and also its ionization potential.
(c) When a photon with energy 42 eV and another photon with energy 56 eV are made to collide with this atom, does this atom absorb these photons?
(d) Determine the radius of its first Bohr orbit.
(e) Calculate the kinetic and potential energies
in the ground state.

- Watch Video Solution

6. Calculate the average atomic mass of chlorine if no distinction is made between its different isotopes?

D Watch Video Solution

7. Calculate the radius $o f_{79}^{197} \mathrm{Au}$.

D Watch Video Solution
8. Calculate the density of the nucleus with
mass number A .

- Watch Video Solution

9. Compute the binding energy of ${ }_{2}^{4} \mathrm{He}$ nucleus using the following data: Atomic mass of Helium atom, $M_{A}(H e)=4.00260 u$ and that of hydrogen atom, $m_{H}=1.00785 u$.

- Watch Video Solution

10. Compute the binding energy per nucleon of ${ }_{2}^{4} \mathrm{He}$ nucleus.

Watch Video Solution

11. (a) Calculate the disintegration energy when stationary ${ }_{92}^{232} \mathrm{U}$ nucleus decays to thorium ${ }_{90}^{228} \mathrm{Th}$ with the emission of α particle.

The atomic masses are of ${ }_{92}^{232} \mathrm{U}=232.037156 u$
${ }^{2}{ }_{90}^{228} \mathrm{Th}=228.028741 u$ and ${ }_{2}^{4} \mathrm{He}=4.002603 u$
(b) Calculate kinetic energies of ${ }_{90}^{228} \mathrm{Th}$ and α particle and their ratio.

D Watch Video Solution

12. Calculate the number of nuclei of carbon
-14 undecayed after 22,920 years if the initial number of carbon -14 atoms is 10,000 . The half- life of carbon-14 is 5730 years.

D Watch Video Solution

13. A radioactive sample has $2.6 \mu g$ of pure ${ }_{7}^{13} \mathrm{~N}$
which has a half - life of 10 minutes.
(a) How many nuclei are present initially?
(b) What is the activity initially?
(c) What is the activity after 2 hours?
(d) Calculate mean life of this sample.

D Watch Video Solution

14. Keezhadi a small hamlet, has become one of the very important archeological places of

Tamilnadu.lt is located in Sivagangi district. A
lot of artefacts(gold coin, pottery, beads, iron tools,jewellery and charcol, etc) have been unearthed in Keezhadi which have been given substantial evidence that an ancient urban
civilization had thrived on the banks of river

Vaigai.

To determine the age of those materials, the charcoal of 200 g sent for carbon dating is given in the following figure(b). The activity of ${ }_{6}^{14} \mathrm{C}$ is found to be 38 decays $/ \mathrm{s}$. Calculate the age of charcoal.

D View Text Solution

15. Calculate the amount of energy released when 1 kg of ${ }_{92}^{235} \mathrm{U}$ undergoes fission reaction.

D Watch Video Solution

Textual Evaluation Solved Multiple Choice

Question

1. Suppose an alpha particle accelerated by a
potential of V volt is allowed to collide with a nucleus whose atomic number is Z, then the
distance of closest approach of alpha particle to the nucleus is

> A. $14.4 \frac{Z}{V} \AA$
> B. $14.4 \frac{V}{Z} \AA$
> C. $1.44 \frac{Z}{V} \AA$
> D. $1.44 \frac{V}{Z} \AA$

Answer: C
(Watch Video Solution
2. In a hydrogen atom, the electron revolving
in the fourth orbit, has angular momentum equal to
A. h
B. $\frac{h}{\pi}$
C. $\frac{4 h}{\pi}$
D. $\frac{2 h}{\pi}$

Answer: D

D Watch Video Solution

3. Atomic number of H -like atom with

 ionization potential 122.4 V for $\mathrm{n}=1$ isA. 1
B. 2
C. 3
D. 4

Answer: C
(Watch Video Solution
4. The ratio between the first three orbits of hydrogen atom is
A. 1:2:3
B. 2:4:6
C. 1:4:9
D. 1:3:5

Answer: C

- Watch Video Solution

5. The charge of cathode rays is

A. positive

B. negative
C. neutral
D. not defined

Answer: B
6. In J.J. Thomson e/m experiment, a beam of electron is replaced by that of muons (particle with same charge as that of electrons but mass 208 times that of electrons). No deflection condition is achieved only if
A. B is increased by 208 times
B. B is decreased by 208 times
C. B is increased by 14.4 times
D. B is decreased by 14.4 times

- Watch Video Solution

7. The ratio of the wavelength for the transition from $\mathrm{n}=2$ to $\mathrm{n}=1$ in $\mathrm{Li}^{++} . \mathrm{He}^{+}$ and H is
A. $1: 2: 3$
B. 1:4:9
C. $3: 2: 1$
D. $4: 9: 36$

- Watch Video Solution

8. The electric potential between a proton and an electron is given by $V=V_{0} \operatorname{In}\left(\frac{r}{r_{0}}\right)$ where r_{0} is a constant. Assume that Bohr atom model is applicable to potential, then variation of radius of $n^{\text {th }}$ orbit r_{n} with the principal quantum number n is

$$
\text { A. } r \infty \frac{1}{n}
$$

$$
\text { B. } r_{n} \infty n
$$

$$
\begin{aligned}
& \text { C. } r_{n} \infty \frac{1}{n^{2}} \\
& \text { D. } r_{n} \infty n^{2}
\end{aligned}
$$

Answer: B
(Watch Video Solution
9. If the nuclear radius of ${ }^{27} A l$ is 3.6 fermi, the approximate nuclear radius of ${ }^{64} \mathrm{Cu}$ is
A. 2.4
B. 1.2
C. 4.8
D. 3.6

Answer: C

D Watch Video Solution

10. The nucleus is approximately spherical in
shape. Then the surface area of nucleus
haviing mass number A varies as.
A. $A^{\frac{2}{3}}$
B. $A^{\frac{4}{3}}$
C. $A^{\frac{1}{3}}$
D. $A^{\frac{5}{3}}$

Answer: A

D Watch Video Solution

11. The mass of a ${ }_{7}^{3} \mathrm{Li}$ nucleus is 0.042 u less
than the sum of the masses of all its nucleons.

The binding energy per nucleon of ${ }_{7}^{3} L i$ nucleus is nearly
A. 46 MeV
B. 5.6 MeV
C. 3.9 MeV
D. 23 MeV

Answer: B

D Watch Video Solution

12. M_{p} denotes the mass of the proton and
M_{n} denotes mass of a neutron. A given
nucleus of binding energy B, contains Z
protons and N neutrons. The mass $M(N, Z)$ of the nucleus is given by (where c is the speed of light)

$$
\begin{aligned}
& \text { A. } M(N, Z)=N M_{n}+Z M_{p}-B c^{2} \\
& \text { B. } M(N, Z)=N M_{n}+Z M_{p}+B c^{2} \\
& \text { C. } M(N, Z)=N M_{n}+Z M_{p}-\frac{B}{c^{2}} \\
& \text { D. } M(N, Z)=N M_{n}+Z M_{p}+\frac{B}{c^{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution
13. A radioactive nucleus (initial mass number

A and atomic number Z) emits 2α and 2 positrons. The ratio of number of neutrons to that of proton in the final nucleus will be

$$
\begin{aligned}
& \text { A. } \frac{A-Z-4}{Z-2} \\
& \text { B. } \frac{A-Z-2}{Z+6} \\
& \text { C. } \frac{A-Z-4}{Z-6} \\
& \text { D. } \frac{A-Z-12}{Z-4}
\end{aligned}
$$

Answer: B
14. The half-line period of a radioactive element A is same as the mean life time of another radioactive element B. Initially both have the same number of atoms. Then
A. A and B have the same decay rate initially
B. A and B decay at the same rate always
C. B will decay at faster rate than A
D. A will decay at faster rate than B

Answer: C

- Watch Video Solution

15. A system consists of N_{0} nucleus at $\mathrm{t}=0$.

The number of nuclei remaining after half of a
half-life (that is, at time $t=\frac{1}{2} T_{\frac{1}{2}}$)
A. $\frac{N_{0}}{2}$
B. $\frac{N_{0}}{\sqrt{2}}$
C. $\frac{N_{0}}{4}$
D. $\frac{N_{0}}{8}$

Answer: B

D Watch Video Solution

Textual Evaluation Solved Short Answer
Questions

1. What are cathode rays?

D Watch Video Solution
2. Write the properties of cathode rays.
3. Explain the results of Rutherford α-particle scattering experiment.

- Watch Video Solution

4. Write down the postulates of Bohr atom model.

5. What is meant by excitation energy?

D Watch Video Solution

6. Define the ionization energy and ionization potential.

D Watch Video Solution

7. Write down the draw backs of Bohr atom model.
8. What is distance of closest approach?

D Watch Video Solution

9. Define impact parameter.
(Watch Video Solution
10. Write a general notation of nucleus of element X . What each term denotes?

D Watch Video Solution
11. What is isotope? Give an example.

- Watch Video Solution

12. What is isotone? Give an example.
13. What is isobar? Give an example.

D Watch Video Solution
14. Define atomic mass unit u.

(Watch Video Solution

15. Show that nuclear density is almost constant for nuclei with $Z>10$.

- Watch Video Solution

16. What is mass defect?

D Watch Video Solution

17. What is binding energy of a nucleus? Give
its expression.

D Watch Video Solution
18. Calculate the energy equivalent of 1 atomic mass unit.

D Watch Video Solution
19. Give the physical meaning of binding energy per nucleon.

D Watch Video Solution
20. What is meant by radioactivity?

- Watch Video Solution

21. Give the symbolic representation of alpha decay, beta decay and gamma decay.

- Watch Video Solution

22. In alpha decay, why the unstable nucleus emits ${ }_{2}^{4} \mathrm{He}$ nucleus ? Why it does not emit four separate nucleons?
23. What is mean life of nucleus? Give the expression.
(Watch Video Solution
24. What is half-life of nucleus? Give the expression.

- Watch Video Solution

25. What is meant by activity or decay rate?

Give its unit.

D Watch Video Solution
26. Define curie.

D Watch Video Solution

27. What are the constituent particles of neutron and proton?

- Watch Video Solution

Textual Evaluation Solved Long Answer Questions

1. Explain the J.J. Thomson experiment to determine the specific charge of electron.

- Watch Video Solution

2. Discuss the Millikan's oil drop experiment to determine the charge of an electron.
3. Derive the energy expression for hydrogen atom using Bohr atom model.

- Watch Video Solution

4. Discuss the spectral series of hydrogen atom.
5. Explain the variation of average binding energy with the mass number by graph and discuss its features.

- Watch Video Solution

6. Explain in detail the nuclear force.

- Watch Video Solution

7. Discuss the alpha decay process with example.

- Watch Video Solution

8. Discuss the beta decay process with examples.

- Watch Video Solution

9. Discuss the gamma decay process with example.

D Watch Video Solution
10. Write a note on radioactivity.

- Watch Video Solution

11. Discuss the properties of neutrino and its
role in beta decay.

- Watch Video Solution

12. What is radio carbon dating ?

- Watch Video Solution

13. Discuss the process of nuclear fission and
its properties.

- Watch Video Solution

14. Discuss the process of nuclear fusion and how energy is generated in stars.

- Watch Video Solution

15. Describe the working of nuclear reactor with a block diagram.
16. Explain in detail the four fundamental forces.

- Watch Video Solution

17. Briefly explain the elementary particles of nature.

D Watch Video Solution

Textual Evaluation Solved Exercise

1. Consider two hydrogen atoms H_{A} and H_{B}
in ground state. Assume that hydrogen atom
H_{A} is at rest and hydrogen atom H_{B} is moving with a speed and make head-on collide on the stationary hydrogen atom H_{A}. After
the strike, both of them move together. What is minimum value of the kinetic energy of the moving hydrogen atom H_{B}, such that any one of the hydrogen atoms reaches one of the excitation state.
2. In the Bohr atom model, the frequency of transitions is given by the following expression $\quad v=R c\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)$, where $n<m$, Consider the following transitions:

Transitions

m-H
1-1
$2-1$

Show that the frequency of these transitions obey sum rule (which is known as Ritz combination principle)
3. (a) A hydrogen atom is excited by radiation of wavelength 97.5 nm . Find the principal quantum number of the excited state.
(b) Show that the total number of lines in
emission spectrum is $\frac{n(n-1)}{2}$ and compute the total number of possible lines in emission spectrum.
4. Calculate the radius of the earth if the density of the earth is equal to the density of the nucleus. [mass of earth $5.97 \times 10^{24} \mathrm{~kg}$].

D Watch Video Solution

5. Calculate the mass defect and the binding energy per nucleon of the ${ }_{47}^{108} \mathrm{Ag}$ nucleus.
[atomic mass of $\mathrm{Ag}=107.905949$]
6. Half lives of two radioactive elements A and

B are 20 minutes and 40 minutes respectively.
Initially, the samples have equal number of nuclei. Calculate the ratio of decayed numbers of A and B nuclei after 80 minutes.

D Watch Video Solution

7. On your birthday, you measure the activity
of the sample ${ }^{210} B i$ which has a half - life of
5.01 days. The initial activity that you measure
is $1 \mu C i$. (a) What is the approximate activity of
the sample on your next birthday? Calculate
(b) the decay constant (c) the mean life (d) initial number of atoms.

- Watch Video Solution

8. Calculate the time required for 60% of a sample of radon undergo decay. Given $T_{1 / 2}$ of radon $=3.8$ days.
9. Assuming that energy released by the fission of a single ${ }_{92}^{235} \mathrm{U}$ nucleus is 200 MeV , calculate the number of fissions per second required to produce 1 kilowatt power.

- Watch Video Solution

10. Show that the mass of radium $\left({ }_{88}^{226} R a\right)$
with an activity of 1 curie is almost a gram.
Given $T_{1 / 2}=1600$ years.
11. Characol pieces of tree is found from an archeological site. The carbon - 14 content of
this characol is only 17.5% that of equivalent sample of carbon from a living tree. What is the age of tree?
(D) Watch Video Solution

Additional Question Multiple Choice Question

1. The potential difference applied to an X-ray
tube is 5 kV and the current through it is 3.2
$m A$. Then the number of electrons striking the target per second is
A. 2×10^{16}
B. 5×10^{18}
C. 1×10^{17}
D. 4×10^{5}

Answer: A
2. The allowed energy for the particle for a particular value of n is proportional to

$$
\begin{aligned}
& \text { A. } a^{-2} \\
& \text { B. } a^{-\frac{3}{2}} \\
& \text { C. } a^{-1} \\
& \text { D. } a^{2}
\end{aligned}
$$

Answer: A
3. A diatomic molecular has moment of inertia
I. By Bohr's quantization condition its
rotational energy in the $n^{\text {th }}$ level ($\mathrm{n}=0$ is not allowed) is

$$
\begin{aligned}
& \text { A. } \frac{1}{n^{2}}\left(\frac{h^{2}}{8 \pi^{2} I}\right) \\
& \text { B. } \frac{1}{n}\left(\frac{h^{2}}{8 \pi^{2} I}\right) \\
& \text { C. } n\left(\frac{h^{2}}{8 \pi^{2} I}\right) \\
& \text { D. } n^{2}\left(\frac{h^{2}}{8 \pi^{2} I}\right)
\end{aligned}
$$

4. The speed of the particle, that can take discrete values is proportional to
A. $n^{-\frac{3}{2}}$
B. n^{-1}
C. $n^{\frac{1}{2}}$
D. n

Answer: D

D Watch Video Solution
5. If 13.6 eV energy is required to 10ise the hydrogen atom, then energy required to remove an electron from $\mathrm{n}=2$ is
A. 10.2 eV
B. 0 eV
C. 3.4 eV
D. 6.8 eV

Answer: C
6. Which of the following transitions in
hydrogen atoms emits photon of highest frequency?
A. $\mathrm{n}=1$ to $\mathrm{n}=2$
B. $n=2$ to $n=6$
C. $\mathrm{n}=6$ to $\mathrm{n}=2$
D. $\mathrm{n}=2$ to $\mathrm{n}=1$
7. The wavelenths involved in the spectrum of deuterium $\left({ }_{1}^{2} H\right)$ are slightly different from that of hydrogen spectrum because
A. sizes of the two nuclei are different
B. masses of the two nuclei are different
C. attraction between the electron and the nucleus is different in the two cases

D. nuclear forces are different in the two

cases

Answer: B

- Watch Video Solution

8. Energy required for the electron excitation
in $L i^{++}$from the first to the third Bohr orbit is
A. 12.1 eV
B. 36.3 eV
C. 108.8 eV
D. 122.4 eV

Answer: C

D Watch Video Solution

9. Minimum energy required to take out the

only one electron from ground state of He^{+} is
A. 13.6 eV
B. 54.4 eV
C. 27.2 eV
D. 6.8 eV

Answer: B

D Watch Video Solution

10. Energy of characteristic X-ray is a consequence of
A. a) energy of projectile electron
B. b) thermal energy of target
C. c) transition in target atoms
D. d) none of the above

Answer: C

- Watch Video Solution

11. How much energy is needed to excite an electron in H -atom from ground state to first excited state?
A. -13.6 eV
B. -10.2 eV
C. +10.2 eV
D. +13.6 eV

Answer: C

D Watch Video Solution

12. For an electron is the second orbit of hydrogen, what is the moment of momentum as per the Bohr's model?
A. $2 \pi h$
B. πh
C. $\frac{h}{\pi}$
D. $\frac{2 h}{\pi}$

Answer: C

D Watch Video Solution
13. The total energy of an electron in the first excited state of hydrogen atom is about -3.4 eV . Its kinetic energy in this state is
A. 3.4 eV
B. 6.8 eV
C. -3.4 eV
D. -6.8 eV

Answer: A

D Watch Video Solution

14. The energy of the ground state of hydrogen is -13.6 eV . The energy of the first excited state is

$$
\text { A. }-27.2 \mathrm{eV}
$$

$$
\text { B. }-52.4 \mathrm{eV}
$$

C. -3.4 eV
D. -6.8 eV

Answer: C

D Watch Video Solution

15. The total energy of electron in the ground state of hydrogen atom is $(-13.6 \mathrm{eV})$. The
kinetic energy of an electron in the first excited state is
A. 6.8 eV
B. 13.6 eV
C. 1.7 eV
D. 3.4 eV

Answer: D

- Watch Video Solution

16. Bohr's theory of hydrogen atom didi not explain fully
A. diameter of H -atom
B. emission spectra
C. ionisation energy
D. the first structure of even hydrogen
spectrum

Answer: D

17. In Bohr's model of an atom, which of the
following is an integral multiple of $\frac{h}{2 \pi}$?
A. Kinetic energy
B. Radius of an atom
C. Potential energy
D. Angular momentum

Answer: D

- Watch Video Solution

18. According to Bohr's theory, relation between n and radius of orbit is:

> A. $r \propto \frac{1}{n}$
> B. $r \propto n$
> C. $r \propto n^{2}$
> D. $r \propto \frac{1}{n^{2}}$

Answer: C

19. In Bohr's model of hydrogen atom, the radius of the first electron orbit is 0.53 A . What will be the radius of the third orbit?
A. $4.77 \AA$
B. $47.7 \AA$
C. $9 \AA$
D. $0.09 \AA$

Answer: A

D Watch Video Solution

20. In Bohr model of hydrogen atom, which of the following is quantised?
A. linear velocity of electron
B. angular veocity of electron
C. linear momentum of electron
D. angular momentum of electron

Answer: C

- Watch Video Solution

21. In Bohr's model, the atomic radius of the
first orbit is r_{0}. Then, the radius of third orbit is
A. $\frac{r_{0}}{9}$
B. r_{0}
C. $9 r_{0}$
D. $3 r_{0}$

Answer: C

D Watch Video Solution

22. What is the ratio of Bohr magneton to the

 nuclear magneton?A. $\frac{m_{p}}{m_{e}}$
B. $\frac{m_{p}^{2}}{m_{e}^{2}}$
C. 1
D. $\frac{m_{e}}{m_{p}}$

Answer: A

D Watch Video Solution
23. In terms of Bohr radius a_{0}, the radius of the second Bohr orbit of hydrogen atom is given by
A. $4 a_{0}$
B. $8 a_{0}$
C. $\sqrt{2} a_{0}$
D. $2 a_{0}$

Answer: A
24. If an α - particle collides head on with a nucleus, what is impact parameter?
A. zero
B. infinite
C. $10^{-10} \mathrm{~m}$
D. $10^{10} \mathrm{~m}$

Answer: A
(Watch Video Solution

25. One femtometre is equivalent to

A. $10^{15} \mathrm{~m}$
B. $10^{-15} \mathrm{~m}$
C. $10^{-12} \mathrm{~m}$
D. $10^{12} \mathrm{~m}$

Answer: B
26. Wavelength of K_{a} line of X-ray spectra varies with atomic number as
A. $\lambda \propto Z$
B. $\lambda \propto \sqrt{Z}$
C. $\lambda \propto \frac{1}{Z^{2}}$
D. $\lambda \propto \frac{1}{\sqrt{Z}}$

Answer: C

D Watch Video Solution
27. The shortest wavelength of X-rays, emiited
from a X-ray tube, depend upon
A. current in the tube
B. voltage applied to the tube
C. nature of glass material in the tube
D. atomic number of the target material

Answer: B

- Watch Video Solution

28. During X-ray formation, if voltage is increased
A. minimum wavelength decreases
B. minimum wavelength increases
C. intensity decreases
D. intensity increases

Answer: A
(Watch Video Solution
29. What would be the radius of second orbit of He^{+}ions?

A. $1.058 \AA$

B. $3.023 \AA$
C. $2.068 \AA$
D. $4.458 \AA$

Answer: A

D Watch Video Solution
30. The minimum wavelength of the X-rays produced by electrons accelerated through a potential difference of V volts is directly proportional to
A. $\frac{1}{\sqrt{V}}$
B. $\frac{1}{V}$
C. \sqrt{V}
D. V^{2}

Answer: B
31. Which source is associated with a line emission spectrum?
A. Electric fire
B. Neon street sign
C. Red traffic light
D. Sun

Answer: B
(Watch Video Solution
32. Which one of the relation is correct between time period and number of orbits while an electron is revolving in a orbit?
A. $T \infty \frac{1}{n^{2}}$
B. $T \infty n^{2}$
C. $T \infty n^{3}$
D. $T \infty \frac{1}{n}$

Answer: C

33. The size of atom is proportional to

A. A
B. $A^{\frac{1}{3}}$
C. $A^{\frac{2}{3}}$
D. $A^{-\frac{1}{3}}$

Answer: B

D Watch Video Solution

34. If an electron jumps from $1^{\text {st }}$ orbit to $3^{\text {rd }}$ orbit, then it will
A. not lose energy
B. not given energy
C. release energy

D. absorb energy

Answer: D

D Watch Video Solution

35. According to uncertainty principal for an electron, time measurement will become uncertain if following is measured with high certainty
A. energy
B. momentum
C. location
D. velocity

Answer: A
36. According to Rutherford's atomic model, the electron inside an atom are
A. stationary
B. centralized
C. non-stationary
D. none of these

Answer: C
37. Wavelength of a light emitted from second orbit to first orbit in a hydrogen atom is
A. $1.215 \times 10^{-7} \mathrm{~m}$
B. $1.215 \times 10^{-5} \mathrm{~m}$
C. $1.215 \times 10^{-4} \mathrm{~m}$
D. $1.215 \times 10^{-3} \mathrm{~m}$

Answer: A

D Watch Video Solution
38. In terms of Rydberg constant R, the wave number of the first Balmer line is
A. R
B. 3 R
C. $\frac{5 R}{36}$
D. $\frac{8 R}{9}$

Answer: C
(Watch Video Solution
39. The K_{∞} X-ray emission line of tungsten occurs at $\lambda=0.021 \mathrm{~nm}$.The energy difference between K and L levels in this atom is about
A. 0.51 MeV
B. 1.2 MeV
C. 59 keV
D. 136 eV

Answer: C

40. The radius of an electron orbit in a hydrogen atom is of the order of
A. $10^{-8} \mathrm{~m}$
B. $10^{-9} \mathrm{~m}$
C. $10^{-11} \mathrm{~m}$
D. $10^{-13} \mathrm{~m}$

Answer: C
(Watch Video Solution
41. Which of the following atoms has the lowest ionisation potential?

A. ${ }_{7}^{14} \mathrm{~N}$
B. ${ }_{55}^{133} \mathrm{Cs}$
C. ${ }_{18}^{40} \mathrm{Ar}$
D. ${ }_{8}^{16} \mathrm{O}$

Answer: B

D Watch Video Solution
42. The transition from the state $\mathrm{n}=4$ to $\mathrm{n}=1$ in a hydrogen like atom result in ultraviolet radiation. Infrared radiation will be obtained in the transition from
A. $2 \rightarrow 1$
B. $3 \rightarrow 2$
C. $4 \rightarrow 2$
D. $5 \rightarrow 4$

Answer: D
43. The number of waves contained in a unit length of the medium is called
A. elastic wave
B. wave number
C. wave pulse
D. electromagnetic wave

Answer: B

D Watch Video Solution
44. When hydrogen atom is in its first excited level, its radius is of the Bohr radius.
A. same
B. half
C. twice
D. four times

Answer: D
(Watch Video Solution
45. The ground state of energy of hydrogen
atom is -13.6 eV .What is the potential energy of the electron in this state?
A. 0 eV
B. -27.2 eV
C. 1 eV
D. 2 eV

Answer: B
46. For ionising an excited hydrogen atom, the energy required (in eV) will be
A. a little less than 13.6
B. 13.6
C. more than 13.6 eV
D. 3.4 or less

Answer: D

47. What is the energy of He^{+}electron in first order?
A. 40.8 eV
B. -27.2 eV
C. -54.4 eV
D. -13.6 eV

Answer: C
(Watch Video Solution
48. If voltage across on X-ray tube is doubled, then energy of X-ray emitted by
A. be doubled
B. be quadrupled
C. become half
D. remain the same

Answer: D

D Watch Video Solution
49. When hydrogen atom is in its first excited level, its radius is of the Bohr radius.
A. twice
B. 4 times
C. same
D. half

Answer: B

D Watch Video Solution
50. The ionisation energy of hydrogen atom is
$13.6 e V$, the ionisation energy of a singly ionsed helium atom would be
A. 13.6 eV
B. 27.2 eV
C. 6.8 eV
D. 54.4 eV

Answer: D

51. When an electron makes transition from n
$=4$ to $n=2$, then emitted line spectrum will be
A. first line of lyman series
B. second line of Balmer series
C. first line of paschen series
D. second line of paschen series

Answer: B

D Watch Video Solution

52. Maximum frequency of emission is obtained for the transition
A. $\mathrm{n}=2$ to $\mathrm{n}=1$
B. $\mathrm{n}=6$ to $\mathrm{n}=2$
C. $\mathrm{n}=1$ to $\mathrm{n}=2$
D. $\mathrm{n}=2$ to $\mathrm{n}=6$

Answer: A

D Watch Video Solution
53. Hydrogen atoms are excited from ground
state to the state of priciple quantum number
4.Then the number of spectral lines observed
will be
A. 3
B. 6
C. 5
D. 2

Answer: B
54. The radius of hydrogen atom, in the ground state is of the order of
A. $10^{-18} \mathrm{~cm}$
B. $10^{-7} \mathrm{~cm}$
C. $10^{-6} \mathrm{~cm}$
D. $10^{-4} \mathrm{~cm}$

Answer: A

- Watch Video Solution

55. According to Bohr's theory of the hydrogen
atom, the speed v_{n} of the electron in a
stationary orbit is related to the principal quantum number n as(c is a constant)

$$
\begin{aligned}
& \text { A. } v_{n}=\frac{c}{n^{2}} \\
& \text { В. } v_{n}=\frac{c}{n} \\
& \text { C. } v_{n}=c \times n \\
& \text { D. } v_{n}=c \times n^{2}
\end{aligned}
$$

Answer: B
56. Out of the following which one is not a possible energy for a photon to be emitted by hydrogen atom according to Bohr's atomic model?
A. 13.6 eV
B. 0.65 eV
C. 1.9 eV
D. 11.1 eV

Answer: D

- Watch Video Solution

Additional Question Short Answer Questions

1. What are the drawbacks of Rutherford atom model?
(D) Watch Video Solution

2. Define excitation potential.

D Watch Video Solution

3. What is atomic number?

- Watch Video Solution

4. What is meant by neutron number?

- Watch Video Solution

5. What is meant by mass number?

- Watch Video Solution

6. Write the properties of neutrino?

- Watch Video Solution

1. What is the distance of closest approach when a 5 MeV proton approaches a gold nucleus?

D Watch Video Solution

2. Calculate the impact parameter of a 5 MeV particle scattered by 90° when it approaches a gold nucleus.
3. What is the angular momentum of an electron in the third orbit of an atom?

D Watch Video Solution

4. Write down the expression for the radii of orbits of hydrogen atom. Calculate the radius of the smallest orbit.

- Watch Video Solution

5. Calculate the frequency of the photon, which
can excite the electron to -3.4 eV from
-13.6 eV .

- Watch Video Solution

6. The ground state energy of hydrogen atom
is -13.6 eV . If an electron makes a transition
from an energy level $-0.85 \mathrm{eV} \rightarrow-1.51 \mathrm{eV}$,

Calculate the wavelength of the spectral line
emitted. To which series of hydrogen spectrum does this wavelength belong?

D Watch Video Solution

7. Express 16 mg mass into equivalent energy in eV .

D Watch Video Solution

8. The nuclear mass of ${ }_{26}^{56} \mathrm{Fe}$ is 55.85 amu .

Calculate its nuclear density.
9. Calculate the density of hydrogen nuclear in

SI units. Given $R_{0}=1.1$ fermi and $m_{p}=1.007825 \mathrm{amu}$.

- Watch Video Solution

10. Find the energy eqivalent of one atomic mass unit, first in Joules and then in MeV.

Using this express the mass defect of ${ }_{8}^{16} O$ in $M e V / e^{2}$.

D Watch Video Solution

11. The decay constant, for a given radioactive sample is $\frac{0.3465}{d a y}$. What percentage of this sample will get decayed in a period of 4 years?
12. Assuming that energy released by the
fission of a single ${ }_{92}^{235} U$ nucleus is 200 MeV ,
calculate the number of fissions per second required to produce 1 kilowatt power.

D Watch Video Solution

