©゙" doubtnut

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL ENGLISH)

ELECTROSTATICS

In Text Solved Examples

1. Calculate the number of electrons in one coulomb of negative charge.
2. Consider two point charges q_{1} and q_{2} at rest as shown in the figure. They are separated by a distance of 1 m . Calculate the force experienced by the two charges for the following cases:
(a) $q_{1}=+2 \mu \mathrm{C}$ and $q_{2}=+3 \mu C$
(b) $q_{1}=+2 \mu \mathrm{C}$ and $q_{2}=-3 \mu \mathrm{C}$
(c) $q_{1}=+2 \mu C$ and $q_{2}-3 \mu \mathrm{C}$ kept in water $\left(\varepsilon_{r}=80\right)$

3. Two small -sized identical equally charged spheres each having mass 1 mg are hanging in equilibrium as shown in the figure. The length of each string is 10 cm and the angle θ is 7° with the vertical. Calculate the magnitude of the charge in each sphere . (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

4. Calculate the electrostatic force and gravitational force between the protos and the electron in a hydrogen atom. They are separated by a distance of $5.3 \times 10^{11} \mathrm{~m}$. The magnitude of charges on the electron and proton are 1.6×10^{-19} C.M Mass of the electrons is $m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$ and mass of proton is $m_{p}=1.6 \times 10^{-27} \mathrm{~kg}$.

D Watch Video Solution

5. Consider four equal charges q_{1}, q_{2}, q_{3} and $q_{4}=q=+1 \mu C$ located at four different points on a circle of radius 1 m , as shown in the figure. Calculate the total force acting on the
charge q_{1} due to all the other charges .

(D) Watch Video Solution
6. Calculate the electric field at point P, Q for the following two
cases as shown in the figure
(a) A positive point charge $+1 \mu C$ is placed at the origin
(b) A negative point charge $-2 \mu C$ is placed at the origin

- Watch Video Solution

7. Consider the charge configuration as shown in the figure .

Calculate the electric field at point A. If an electron is placed at points A, what is the acceleration experienced by this electron? (mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$ and charge of
electron $\left.=-1.6 \times 10^{-19} C\right)$.

- Watch Video Solution

8. A block of mass m and positive charge q is placed on an insulated frictionless inclined plane as shown in the figure. A uniform electric field E is applied parallel to the inclined surface such that the block is at rest. Calculate the magnitude
of the electric field E .

- Watch Video Solution

9. The following pictures depict electric field lines for various charge configurations.

(b)

(c)
(i) In figure (a) identify the signs of two charges and find the ratio $\left|\frac{q_{1}}{q_{2}}\right|$
(ii) In figure (b) calculate the ratio of two positive charges and identify teh strength of the electric field at three points A, B and C
(iii) Figure (c) represents the electric field lines for three charges. If $q_{2}=-20 \mathrm{nC}$ then calculate the values of q_{1} and q_{3}

- Watch Video Solution

10. Calculate the electric dipole moment for the following charge configurations .

(a)

(b)

- Watch Video Solution

11. A sample of HCl gas is placed in a uniform electric field of magnitude $3 \times 10^{4} N . C^{-1}$. The dipole moment of each HCl molecule is $3.4 \times 10^{-39} \mathrm{Cm}$. Calculate the maximum torque experienced each HCI molecule.

- Watch Video Solution

12. (a) Calculate the electric potential at points P and Q as shown in the figure below.
(b) Suppose the charge $+9 \mu C$ is replaced by $-9 \mu C$ find the
electrostatic potentials at points P and Q

(c) Calculate the work done to bring a test charge $+2 \mu C$ from infinity to the point P. Assume the charge $+9 \mu C$ is held fixed at origin and $+2 \mu C$ is brought from infinity to P.

- Watch Video Solution

13. Consider a point charge $+q$ placed at the origin and another point charge $-2 p$ placed at a distance of 9 m from the charge $+q$. Determine the point between the two charges at which electric potential is zero.

D Watch Video Solution

14. The following figure represents the electric potential as a function of x-coordinate Plot the corresponding electric field as a function of x.

- Watch Video Solution

15. Four charges are arranged at the corners of the square PQRS of side a as shown in the figure . (a) Find the work
required to assemble these charges in the given configuration
. (b) Suppose a charge q is brought to the center of the square by keeping the four charges fixed at the corners how much extra work is required for this?

16. A water molecule has an electric dipole moment of $6.3 \times 10^{-30} \mathrm{~cm}$. A sample contains 10^{22} water molecules with all the dipole moments aligned parallel to the external electric field of magnitude $3 \times 10^{5} N C^{-1}$. How much work is required to rotate all the water molecules from $\theta=0^{\circ}$ to 90° ?

- Watch Video Solution

17. Calculate the electric flux through the ractangle of sides 5
cm and 10 cm kept in the rigion of a uniform field $100 \mathrm{NC}^{-1}$.
The angle θ is 60°. Suppose θ becomes zero what is the
electric flux?

(D) Watch Video Solution

18.

(i) In figure (a) calulate the electric flux through the closed
areas A_{1} and A_{2}
(ii) In figure (b) calculate the electric flux through the cube

D Watch Video Solution

19. A small ball of conducting material having a charge $+q$ and mass m is thrown upward at and angle θ to horizontal surface with an initial speed ν_{0} as shown in the figure. There exists an uniform electric field E downward along with the gravitational field g. Calculate the range maximum height and time of flight in the motion of this charged ball. Neglect the effect of air and
treat the ball as a point mass .

D Watch Video Solution

20. A parallel plate capacitor has square plate of side 5 cm and separated by a distance of 1 mm . (a) Calculate the capacitance of this capacitor. (b) If a 10 V battery is connected to the capacitor what is the charge stored in any one of the plates? (The value of $\left.\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$.
21. A parallel plate capacitor filled with mica having $\varepsilon_{r}=5$ is connected to a 10 V battery. The area of the parallel plate is $6 m^{2}$ and separation distance is 6 mm .
(a) Find the capacitance and stored charge . (b) After the capacitor is fully charged the battery is disconnected and the dielectric is removed carefully .
`Calculated the new values of capacitance stored energy and charge.

- Watch Video Solution

22. Find the equivalent capacitance between P and Q for the configuration shown below in the figure (a).

- Watch Video Solution

23. Two conducting spheres of radius $r_{1}=8 \mathrm{~cm}$ and $r_{2}=2 \mathrm{~cm}$ are separated by a distance much larger than 8 cm and are connected by a thin conducting wire as shown in the figure. A total charge of $\mathrm{Q}=+100 \mathrm{nC}$ is placed on one of the spheres.

After a fraction of a second the charge Q is redistributed and both the spheres attain electrostatic equilibrium .

(a) Calculate the charge and surface charge density on each sphere.
(b) Calculate the potential at the surface of each sphere.

- Watch Video Solution

24. Dielectric strength of air is $3 \times 10^{6} V . \mathrm{m}^{-1}$. Suppose the radius of a hollow sphere in the Van de Graff generation is R $=0.5 \mathrm{~m}$, calculate the maximum potential difference created by this Van de Graaff generator .

(Watch Video Solution

Textual Evaluation Solved Multiple Choice Questions

1. Two identical point charges'of magnitude $-q$ are fixed as shown in the figure below. A third charge $+q$ is placed midway between the two charges at the point P. Suppose this charge is displaced a small distance from the point P in the directions indicated by the arrows, in which direction(s) will +q be stable with respect to the displacement?

A. A_{1} and A_{2}
B. B_{1} and B_{2}
C. both directions
D. No stable
2. Which charge configuration produces a uniform electric field ?
A. point charge
B. infinite uniform line charge
C. uniformly charged infinite plane
D. uniformly charged spherical shell

Answer: A::C::D

- Watch Video Solution

3. What is the ratio of the charges $\left|\frac{q_{1}}{q_{2}}\right|$ for the following electric field line pattern?

A. a) $\frac{1}{5}$
B. b) $\frac{25}{11}$
C. c) 5
D. d) $\frac{14}{25}$

Answer: A::B
4. An electric dipole is placed at an alignment angle of 30° with an electric field of $2 \times 10^{5} \mathrm{~N} C^{-1}$. It experiences a torque equal to 8 Nm . The charge on the dipole if the dipole length is 1 cm is
A. 4 mC
B. 8 mC
C. 5 mC
D. 7 mC

Answer: C

5. Four Gaussian surface are given below with charges inside each Gaussian surface . Rank the electric flux through each

Gaussian surface in increasing order \qquad

A. $D<C<B<A$
B. $A<B=C<D$
C. $C<A=B<D$
D. $D>C>B>A$

D Watch Video Solution

6. The total electric flux for the following closed surface which is kept inside water

A. $\frac{80 q}{\varepsilon_{0}}$
B. $\frac{q}{40 \varepsilon_{0}}$
C. $\frac{q}{80 \varepsilon_{0}}$
D. $\frac{q}{160 \varepsilon_{0}}$

Answer: D

- Watch Video Solution

7. Two identical conducting balls having positive charges q_{1} and q_{2} are separated by a center to center distance r. If they are made to touch each other and then separated to the same distance, the force between them will be.
A. less than before
B. same as before
C. more than before
D. zero

(D) Watch Video Solution

8. Rank the electrostatic potential energies for the given system of charges in increasing order

(a)

(b)

(c)

(d)
A. $1=4<2<3$
B. $2=4<3<1$
C. $2=3<1<4$
D. $3<1<2<4$

Answer: A::B::C::D
9. An electric field $\vec{E}=10 x h a i i$ exists in a certain region of space. Then the potential difference $V=V_{0}-V_{A}$, where V_{0} is the potential at the origin and V_{A} is the potential at $\mathrm{x}=2 \mathrm{~m}$ is
A. 10 j
B. -20 J
C. +20 J
D. -10 J

Answer: B

10. A thin conducting spherical shell of radius R has a charge Q which is uniformly distributed on its surface. The correct plot for electroistatic potential due to this spherical shell is \qquad
A.

B.

C.

D.

11. Two points A and B are maintained at a potential of 7 V and -4 V respectively. The work down in moving 50 electrons from A to B is
A. $8.80 \times 10^{-17} J$
B. $-8.80 \times 10^{-17} \mathrm{~J}$
C. $4.40 \times 10^{-17} J$
D. $5.80 \times 10^{-17} J$

Answer: A

- Watch Video Solution

12. If voltage applied on a capacitor is increased from V to 2 V :
A. Q remains the same C is doubled
B. Q is doubled C doubled
C. C remains same Q doubled
D. Both Q and C remain same

Answer: A::B::C::D

- Watch Video Solution

13. A parallel plate capacitor stores a charge Q at a voltage V .

Suppose the area of the parallel plate capacitor and the distance between the plates are each doubled then which is the quantity that will change ?
A. a) Capacitance
B. b) Charge
C. c) Voltage
D. d) Energy density

Answer: D

- Watch Video Solution

14. Three capacitors are connected in triangle as shown in the figure . The equivalent capacitance between the points A and C
\qquad
$2 \mu \mathrm{~F}$

A. а) $1 \mu F$
B. b) $2 \mu F$
C. c) $3 \mu F$
D. d) $\frac{1}{4} \mu F$

Answer: B
15. Two metallic spheres of radii 1 cm and 3 cm are given charges of $-1 \times 10^{-2} C$ and $5 \times 10^{-2} \mathrm{C}$ respectively. IF these are connected by a conducting wire the final charge on the bigger sphere is \qquad
A. a) $3 \times 10^{-2} \mathrm{C}$
B. b) $4 \times 10^{-2} \mathrm{C}$
C. c) $1 \times 10^{-2} C$
D. d) $2 \times 10^{-2} \mathrm{C}$

Answer: A::B::C

1. What is meant by quantisation of charges ?

- Watch Video Solution

2. Write down Coulomb 's law in vector form and mention what each term represents .

- Watch Video Solution

3. What are the differences between Coulomb force and gravitational force?

- Watch Video Solution

4. Write a short note on superposition principle.

(D) Watch Video Solution

5. Define Electric field .

- Watch Video Solution

6. What is mean by Electric field lines ?

- Watch Video Solution

7. The electric field lines never intersect . Justify.

- Watch Video Solution

8. Define Electric dipole.

- Watch Video Solution

9. What is dipole moment ?

(D) Watch Video Solution

10. Define electric potential and potential difference.

(D) Watch Video Solution

11. What is an equipotential surface?
12. What are the properties of an equipotential surface?

- Watch Video Solution

13. Give the relation between electric field and electric potential.

D Watch Video Solution

14. Define electrostatic potential energy.

- Watch Video Solution

15. Define 'electric flux
16. What is meant by electrostatic energy density?

(
 Watch Video Solution

17. Write a short note on electrostatic shielding .

(D) Watch Video Solution

18. What is polarisation?
19. What is dielectric strength ?

Watch Video Solution

20. Define capacitance . Give its unit.

- Watch Video Solution

21. What is corona discharge?

- Watch Video Solution

Textual Evaluation Solved lif Long Answer Questions

1. Discuss the basic properties of electric charges.
2. Explain in detail Coulomb 's law and its various aspects.

(D) Watch Video Solution

3. Define Electric field .

(Watch Video Solution

4. How do we determine the electric field due to a continuous charge distribution ? Explain. Electric field due to continous charge distribution
5. Calculate the electric field due to a dipole on its axial line and equatorial plane.

- View Text Solution

6. Derive an expression for the torque experienced by a dipole due to a uniform electric field.

- View Text Solution

7. Derive an expression for electrostatic potential due to a point charge.
8. Derive an expression for electrostatic potential due to an electric dipole.

- Watch Video Solution

9. Obtain an expression for potential energy due to a collectrion of three point charges which are separated by finite distances.

- View Text Solution

10. Derive an expression for electrostatic potential energy of the dipole in a uniform electric field.
11. Obtain Gauss law from Coulomb 's law .

- Watch Video Solution

12. Obtain the expression for electric field due to an infinitely long charged wire.

D Watch Video Solution

13. Obtain the expression for electric field due to an charged infinite plane sheet .
14. Obtain the expression for electric field due to an uniformly charge spherical shell.

D Watch Video Solution

15. Discuss the various properties of conductors in electrostatic equilibrium . Properties of conductors in electrostatic equilibrium:
(D) Watch Video Solution
16. Explain the process of electrostatic induction.

(D) Watch Video Solution

17. Explain dielectrics in detail and how an electric field is induced inside a dielectric .

- Watch Video Solution

18. Obtain the expression for capacitance for capacitance for a parallel plate capacitor .

(D) Watch Video Solution

19. Obtain the expression for the energy stored in a parallel plate capacitor.
20. Explain in detail the effect of a dielectric placed in a parallel plate capacitor.

- Watch Video Solution

21. Derive the expression for resultant capacitance when
capacitors are connected in series and in parallel.

- Watch Video Solution

22. Explain in detail how charges are distributed in a conductor and the principle behind the lightning conductor.
23. Explain in detail the construction and working of a Van de Graaff generator.

(D) Watch Video Solution

Exercises

1. When two objects are rubbed with each other approximately a charge of 50 nC can be produced in each object. Calculate the number of electrons that must be transferred to produce this charge.

(D) Watch Video Solution

2. The total number of electrons in the human body is typically in the order of 10^{28}. Suppose due to some reason you and your friend lost 1% of this number of electrons. Calculate the electrostatic force between you and your friend separated at a distance of 1 m . Compare this with your weight. Assume mass of each person is 60 kg and use point charge approximation.

D Watch Video Solution

3. Five identical charges Q are placed equidistant on a semicircle as shown in the figure. Another point charge q is kept at the center of the circle of radius R. Calculate the
electrostatic force experienced by the charge q.

- Watch Video Solution

4. Suppose a charge +q on Earth's surface and another +q charge is placed on the surface of the Moon. (a) Calculate the
value of q required to balance the gravitational attraction between Earth and Moon (b) Suppose the distance between the Moon and Earth is halved would the charge q change ?
(Take $m_{E}=5.9 \times 10^{24} \mathrm{kgm}_{M}=7.348 \times 10^{22} \mathrm{~kg}$)

- Watch Video Solution

5. Draw the free body diagram for the following charges as shown in the figure (a), (b) and (c).

6. Consider an electron travelling with a speed V_{0} and entering into a uniform electric field \vec{E} which is perpendicular to \vec{V}_{0} as shown in the Figure.

Ignoring gravity, obtain the electron 's acceleration velocity and position as functions of time.

D Watch Video Solution

7. A closed triangular box is kept in an electric field of magnitude $E=2 \times 10^{3} N C^{-1}$ as shown in the figure. Calculate the electric flux through the (a) vetical rectangular
surface (b) slanted surface and (c) entire surface.

- Watch Video Solution

8. The electrostatic potential is given as a function of x in figure (a) and (b). Calculate the corresponding electric fields in regions A, B, C and D. Plot the electric field as a function of x
for the figure (b).

(a)

(b)

(Watch Video Solution

9. A spark plug in a bike or a car is used to ignite the air - fuel mixture in the engine. It consists of two electrodes separated by a gap of around 0.6 mm gap as shown in the figure.

To create the spark an electric field of magnitude $3 \times 10^{6} \mathrm{Vm}^{-1}$ is required. (a) What potential difference must be applied to produce the spark ? (b) If the gap is increased, does the potential defference increase decrease or remains the same the same ? (c) find the potential difference if the gap is 1 mm .

- Watch Video Solution

10. A point charge of $+10 \mu \mathrm{C}$ is placed at a distance of 20 cm from another identical point charge of $+10 \mu C$. A point charge of $-2 \mu \mathrm{C}$ is moved from point a to b as shown in the figure. Calculate the change in potential energy of the system ? Interpret your result .

- Watch Video Solution

11. Calculate the resultant capacitances for each of the following combinations of capacitors .

(a)

(c)

(d)

(c)
12. An electron and a proton are allowed to fall through the separation the plates of a parallel plate capacitor of voltage 5

V and separation distance $\mathrm{h}=1 \mathrm{~mm}$ as shown in the figure .

(a) Calculate the time of flight for both electron and proton
(b) Suppose if a neutron is allowed to fall what is the time of flight ?
(c) Among the three which one will reach the bottom first?
(Take
$m_{p}=1.6 \times 10^{-27} \mathrm{~kg}, m_{c}=9.1 \times 10^{-31} \mathrm{~kg}$ and $\left.\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

- Watch Video Solution

13. During a thunder storm the movement of water molecules within the clouds creates friction partially causing the bottom part of the clouds to become negatively charged. This implies that the bottom of the cloud and the ground act as a parallel plate cpacitor. If the electric field between the cloud and ground exeeds the dielectric breakdown of the air $\left(3 \times 10^{6} \mathrm{Vm}^{-1}\right)$ lightning will occur.
(a) If the bottom part of the cloud is 1000 m above the ground determine the electric potential difference that exists between the cloud and ground.
(b) In a typical lightning phenomenon around 25 C of electrons are transferred from cloud to ground. How much electrostatic
potential energy is transferred to the ground?

- Watch Video Solution

14. For the given capacitor configuration
(a) Find the charges on each capacitor
(b) potential difference across them
(c) energy stored in each capacitor .

- Watch Video Solution

15. What is the area of the plates of a 2 F parallel plate capacitor, given that the separation between the plates is 0.5 cm ? [You will realise from your answer why ordinary capacitors are in the range of $\mu \mathrm{F}$ or less. However, electrolytic capacitors
do have a much larger capacitance (0.1 F) because of very minute separation between the conductors.]

(D) Watch Video Solution

Additional Questions Solved Multiple Choice Questions

1. When a slide body is negatively charged by friction, it means that the body has
A. acquired excess of electrons
B. lost some problem
C. acquired some electrons and lost a lesser number of
protons
D. lost some positive ions

(D) Watch Video Solution

2. A force of 0.01 N is exerted on a charge of $1.2 \times 10^{-5} \mathrm{C}$ at a certain point. The electric field at that point is
A. $5.3 \times 10^{4} N C^{-1}$
B. $8.3 \times 10^{4} N C^{-1}$
C. $5.3 \times 10^{4} N C^{1}$
D. $8.3 \times 10^{2} N C^{-1}$

Answer: A::B::C

3. The electric field intensity at a point 20 cm away from a charge of $2 \times 10^{-5} \mathrm{C}$ is
A. $4.5 \times 10^{6} N C^{-1}$
B. $3.5 \times 10^{5} \mathrm{NC}^{-1}$
C. $3.5 \times 10^{6} \mathrm{NC}^{-1}$
D. $4.5 \times 10^{5} N C^{-1}$

Answer: A::C::D

- View Text Solution

4. How many electrons will have a charge of one coulomb ?
A. 6.25×10^{18}
B. 6.25×10^{19}
C. 1.6×10^{18}
D. 1.6×10^{19}

Answer: A::B

D Watch Video Solution

5. The ratio of the force between two charges in air and that in a medium of dielectric constant K is
A. K : 1
B. 1 : K
C. $k^{2}: 1$
D. $1: K^{2}$

(D) Watch Video Solution

6. The workdone in moving a positve charge on an equipotenial surface is
A. finite and positive
B. infinite
C. finite and negative
D. zero

Answer:

(Watch Video Solution
7. If a charge is moved against the coulomb force of an electric field.
A. a) work is done by the electric field
B. b) energy is used from some outside source
C. c) the strength of the field is decreased
D. d) The energy of the system is decreased

Answer: A::C::D

- Watch Video Solution

8. No current flows between two charged particles when connected if they have same \qquad .
A. If they have the same capacitance
B. if they have same quantity of charge
C. If they have the same potential
D. If they have the same charge density

Answer: A

(D) Watch Video Solution

9. Electric field lines about a negative point charge are
A. circular, anticlockwise
B. circular, chockwise
C. radial, inwards
D. radial, outwards

(D) Watch Video Solution

10. Two plates are 1 cm aprt and the potential difference between them is 10 V . the electric field between the plates is
A. $10 N C^{1}$
B. $250 N C^{-1}$
C. $500 N C^{-1}$
D. $1000 N C^{-1}$

Answer: A::C

- Watch Video Solution

11. At a large distance (r), the electric field due to a dipole varies as
A. a) $\frac{l}{r}$
B. b) $\frac{l}{r^{2}}$
C. c) $\frac{l}{r^{3}}$
D. d) $\frac{l}{r^{4}}$

Answer: C

- Watch Video Solution

12. Two thin infinite parallel plates have uniform charge densities $+\sigma$ and $-\sigma$. The electric field in the space between then is
A. $\frac{\sigma}{2 \varepsilon_{0}}$
B. $\frac{\sigma}{\varepsilon_{0}}$
C. $\frac{2 \sigma}{\varepsilon_{0}}$
D. zero

Answer: A

- Watch Video Solution

13. Two isolated, charged coducting spheres of radii
R_{1} and R_{2} produce the same electric field near their surfaces.

The ratio of electric potentials on their surfaces is
A. $\frac{R_{1}}{R_{2}}$
B. $\frac{R_{2}}{R_{1}}$
C. $\frac{R_{1}^{2}}{R_{2}^{2}}$
D. $\frac{R_{2}^{2}}{R_{2}^{1}}$

Answer: A::B

- Watch Video Solution

14. A $100 \mu \mathrm{~F}$ capacitor is to have an energy content of 50 J in order to opreator a flash lamp. The voltage required to charge the capacitor is
A. 500 V
B. 1000 V
C. 1500 V
D. 2000 V

- Watch Video Solution

15. A $1 \mu \mathrm{~F}$ capacitor is placed n parallel with a $2 \mu F$ capacitor across a 100 V supply. The total charge on the system is
A. $\frac{100}{3} \mu \mathrm{C}$
B. $100 \mu \mathrm{C}$
C. $150 \mu \mathrm{C}$
D. $300 \mu \mathrm{C}$

Answer: C

16. A parallel plate capacitor of capacitance $100 \mu \mathrm{~F}$ Is charged to 500 V . The plate separation is then reduce to half its original value. Then the potential on the capacitor becomes
A. 250 V
B. 500 V
C. 1000 V
D. 2000 V

Answer: B

(D) Watch Video Solution

17. A point charge q is placed at the midpoint of a cube of side
L. The electric flux emerging from the cube is
A. $\frac{q}{\varepsilon_{0}}$
B. $\frac{q}{61 \varepsilon_{0}}$
C. $\frac{6 L q}{\varepsilon_{0}}$
D. zero

Answer:

- Watch Video Solution

18. The capacitor C of a spherical conductor of radius R is proportional to
A. R^{2}
B. R
C. R^{1}
D. R^{0}

Answer:

- Watch Video Solution

19. Energy of a capacitor of capacitance C, when subjected to a pontential V, is given by
A. $\frac{1}{2} C V^{2}$
B. $\frac{1}{2} C^{2}$ v
C. $\frac{1}{2} \mathrm{CV}$
D. $\frac{1}{2} \frac{C}{V}$

Answer: A::B::C

20. The electric field due to a dipole at a distnce r from its
centre is proportional to
A. $\frac{1}{r^{3.2}}$
B. $\frac{1}{r^{3}}$
C. $\frac{1}{r}$
D. $\frac{1}{r^{2}}$

Answer: A::C

- Watch Video Solution

21. The work done in carrying a charge 'a' once round a circle of radius 'a' with a charge Q at its centre is
A. $2 \pi \mathrm{rq}$
B. $2 \pi Q q$
C. $\frac{Q}{2 \varepsilon_{0}} r$
D. zero

Answer:

- Watch Video Solution

22. The workdone in rotating an electric dipole of moment P in an electric field E through an angle θ from the direction of the field is
A. $\mathrm{pE}(1-\cos \theta)$
B. 2 pE
C. zero
D. $\mathrm{pE} \cos \theta$

Answer: A::C

- Watch Video Solution

23. Capacitance of a parallel plate capacitor can be increased by
A. a) increasing the distance between the plates
B. b) increasing the thickness of the plates
C. c) increasing the thickness of the plates
D. d) decreasing the distance between the plates

- Watch Video Solution

24. Two charges are placed in vacuum at a distance d apart.

The force between them is F. if a medium of dielectric constant

2 is introduced between them, the force will now be
A. 4 F
B. 2 F
C. $F / 2$
D. F/4

Answer: D

- Watch Video Solution

25. An electric charge is placed at the centre of a cube of side
a. The electric flux through one of its foces will be
A. $\frac{q}{6 \varepsilon_{0}}$
B. $\frac{q}{\varepsilon_{0} a^{2}}$
C. $\frac{q}{4 \pi \varepsilon_{0} a^{2}}$
D. $\frac{q}{\varepsilon_{0}}$

Answer:

- Watch Video Solution

26. The electric field in the region between two concentric charged spherical shells
A. is zero
B. increases with distance from centre
C. is constant
D. decreases with distance from centre

Answer: A::C::D

- Watch Video Solution

27. A hollow metal sphere of radius 10 cm is charged such that the potential on its surface is 80 V . the potential at the centre of the sphere is
A. 800 V
B. zero
C. 8 V
D. 80 V

Answer:

- Watch Video Solution

28. A $4 \mu \mathrm{~F}$ capacitor is charged to 400 V and then its plates are joined through a resistance of $1 \mathrm{~K} \Omega$. The heat produced in the resistance is
A. 0.16 J
B. 0.32 J
C. 0.64 J
D. 1.28 J
29. The work done in carrying a charge 'a' once round a circle of radius 'a' with a charge Q at its centre is
A. $\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{2}}$
B. zero
C. $\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R}$
D. infinite

Answer:

- Watch Video Solution

30. Two plates are 2 cm apart. If a potential difference of 10 V is applied between them. The electric field between the plates will be
A. $20 N C^{-1}$
B. $500 N C^{-1}$
C. $5 N C^{-1}$
D. $250 N C^{-1}$

Answer: A::C

- Watch Video Solution

31. The capacitance of a parallel plate capacitor does not depend on
A. area of the plates
B. metal of the plates
C. medium between the plates
D. distance between the plates

Answer: A

- Watch Video Solution

32. A capacitor of $50 \mu \mathrm{~F}$ is charged to 10 volts. Its energy in joules is
A. 2.5×10^{-3}
B. 5×10^{-3}
C. 10×10^{-4}
D. 2.5×10^{4}

Answer: A::B::C

- Watch Video Solution

33. A cube of side b has a charge q at each of its vertices. The electric field due to this charge distribution at the centre of the cube is
A. $\frac{q}{b^{2}}$
B. $\frac{q}{2 b^{2}}$
C. $\frac{32 q}{b^{2}}$
D. zero

Answer:

(Watch Video Solution

34. Total electric fulx coming out of a unit positive charge put in air is
A. ε_{0}
B. ε_{0}^{-1}
C. $\left(4 \pi \varepsilon_{0}\right)^{-1}$
D. $4 \pi \varepsilon_{0}$

Answer: A

- Watch Video Solution

35. Electron volt (eV) is a unit of
A. energy
B. potential
C. current
D. charge

Answer:

- Watch Video Solution

36. A point Q lies on the perpendicular bisector of an electric dipole of dipole moment P. If the distance of Q from the dipole is r, then electric field at Q is proportional to
A. p^{-1} and r^{-2}
B. p and r^{-2}
C. p and r^{-3}
D. p^{2} and r^{-3}

Answer: A::C::D

D Watch Video Solution

37. A hollow insulated conducting sphere is given a positive charge of $10 \mu \mathrm{C}$. What will be the electric field at the centre of the sphere is its radius is 2 meters ?
A. zero
B. $8 \mu C m^{-2}$
C. $20 \mu C m^{-2}$
D. $5 \mu C m^{-2}$

Answer:

(D) Watch Video Solution

38. A particle of charge q is placed at rest in a uniform electric
field E and then released. The kinetic energy attained by the particle after moving a distance y is
A. $q E^{2} y$
B. $q^{2} \mathrm{Ey}$
C. $q E y^{2}$
D. qEy

Answer:

39. Dielectric constant of metals is
A. 1
B. greater than 1
C. zero
D. infinite

Answer:

(D) Watch Video Solution

40. When a positively charged conductor is earth connected
A. a) protons flow from the conductor to the earth
B. b) electrons flow from the earth to the conductor
C. c) electrons flow from the conductor to the earth
D. d) no charge flow occurs

Answer: A::C::D

D Watch Video Solution

41. The SI unit of electric flux is
A. volt metre ${ }^{2}$
B. newton per coulomb
C. volt meter
D. joule per coulomb

Answer:

42. Twenty seven water drops of the same size are charged to the same potential if they are combined to from a big drop, the ratio of the potential of the big drop to that of a small drop is
A. 3
B. 6
C. 9
D. 27

Answer:

43. A point charge $+q$ is placed at the midpoint of a cube of side I. the electric flux emerging from the cube is
A. $\frac{q}{\varepsilon_{0}}$
B. $\frac{6 q l^{2}}{\varepsilon_{0}}$
C. $\frac{q}{6 l^{2} \varepsilon_{0}}$
D. $\frac{C^{2} V^{2}}{2}$

Answer:

- Watch Video Solution

44. Energy of a capacitor of capacitance C, when subjected to a pontential V, is given by
A. $\frac{C^{2} V}{2}$
B. $\frac{C V}{2}$
C. $\frac{C V^{2}}{2}$
D. $\frac{C^{2} V^{2}}{2}$

Answer: B::C

(D) Watch Video Solution

45. The electric potential at the centre of a charged conductor is
A. zero
B. twice that on the surface
C. half that on the surface
D. same as that on the surface

Answer: A::C

D Watch Video Solution

46. The energy stored in a capacitor is given by
A. $q \mathrm{~V}$
B. $\frac{1}{2} q$ V
C. $\frac{1}{2} C V$
D. $\frac{q}{2 C}$

Answer: A::B

D Watch Video Solution
47. The unit of permitivity of free space ε_{0} is
A. coulomb/newton-meter
B. newton-meter ${ }^{2} /$ coulomb 2
C. coulomb ${ }^{2} /$ newton-meter ${ }^{2}$
D. conlomb /(newton - meter $)^{2}$

Answer: B::C

- Watch Video Solution

48. An electric dipole has the magnitude of its charge as q and its dipole moment is p . It is placed in a uniform electric field E .

It its dipole moment is along the direction of the field, the force on it and its potential energy are, respectively.
A. 2 qE and minimum
B. $q E$ and $p E$
C. zero and minimum
D. $q E$ and maximum

Answer: A: D

(D) Watch Video Solution

49. An electric dipole of moment p is lying along a uniform electric field \vec{E}. The workdone in rotating the dipole by 90° is
A. $\frac{p E}{2}$
B. 2 pE
C. pE
D. $\sqrt{2} \mathrm{pE}$

Answer:

- Watch Video Solution

50. A parallel plate capacitor is charged to a potential difference of V volts. After disconnecting the charging battery the distance between the plates of the capacitor is increased using an insulating handle. As a result the potential difference between the plates
A. does not charge
B. becomes zero
C. increases
D. decreases

- Watch Video Solution

51. When air is replaced by a dielectric medium of constant K , the maximum force of attraction between two charges separated by a distance
A. increases K times
B. increases K^{-1} times
C. decreases K times
D. remains constant

Answer: A::C::D

52. When a comb rubbed with dry hair attracts pieces of paper. This is because the
A. comb is a good conductor
B. paper is a good conductor
C. the atoms in the paper gets polarised by the charged combe
D. the comb possese magnetic properties

Answer: A::B::C::D

D Watch Video Solution

53. Which of the following is not a property of equipotential surfaces ?
A. a) They do not cross each other
B. b) they are concentric spheres for uniform electric field
C. c) the rate of change of potential with distance on them is zero
D. d) they can be imaginary spheres

Answer: A::C::D

- Watch Video Solution

54. A charge Q is enclosed by a Gaussian spherical surface of radius R. if the radius is doubled. Then the outward electric flux will be
A. reduced to half
B. doubled
C. becomes 4 times
D. remains the same

Answer: A

(D) Watch Video Solution

55. If the electric field in a region is given by $\vec{E}=5 \hat{i}+4 \hat{j}+9 \widehat{K}$, then the electric flux through a surface of area 20 units lying in the y-z plane will be
A. 20 units
B. 80 units
C. 100 units

Answer: A

- Watch Video Solution

56. A , B and C are three points in a uniform electric field. The electric potential is

A. a) maximum at A
B. b) maximum at B
C. c) maximum at C
D. d) same at all the three points A, B and C

- Watch Video Solution

57. A conducting sphere of radius R is give a charge Q. The electric potential and the electric field at the centre of the sphere are, respectively
A. a) zero, $\frac{Q}{4 \pi \varepsilon_{0} R^{2}}$
B. b) $\frac{Q}{4 \pi \varepsilon_{0} R^{2}}, \frac{Q}{4 \pi \varepsilon_{0} R^{2}}$
C. c) $\frac{Q}{4 \pi \varepsilon_{0} R}$, zero
D. d) zero, zero

Answer: D

Additional Questions Solved li Fill In The Blanks

1. A dipole is placed in a uniform electric field with its axis parallel to the field. It experiences

D Watch Video Solution

2. The unit of permittivity is \qquad

(Watch Video Solution

3. The branch of physics which deals with static electric charges or charges at rest is

-
 Watch Video Solution

4. The charges in a electrostatics field are analogous to In a gravitational field.

- Watch Video Solution

5. The substances which acequire charges on rubbing are said to be

- Watch Video Solution

6. Electron means \qquad

- Watch Video Solution

7. when a glass rod is rubbed with silk cloth, both get charged.

(D) Watch Video Solution

8. When an ebonite rod is rubbed with fur, the charge acquired by the fur is.

D Watch Video Solution

9. Termed the classification of positive and negative charges.

- Watch Video Solution

10. Applications such as electrostatic point spraying and powder coating. Are based on the property of Between charged bodies.

- Watch Video Solution

11. Bodies which allow the charge to pass through them are called

D Watch Video Solution

12. Bodies which do not allow the charge to pass through them are called \qquad

- Watch Video Solution

13. The unit of electric charge is
14. Total charge in an isolated sysem \qquad

- Watch Video Solution

15. The force between two charged bodies was studied by

- Watch Video Solution

16. The unit of permittivity in free space $\left(\varepsilon_{0}\right)$ is \qquad

- Watch Video Solution

17. The value of ε_{r} for air or vacuum is \qquad
18. Charges can neither be created nor be destroyed is the statement of law of conservation of

- Watch Video Solution

19. The space around the test charge, in which it experiences a force is known as

(D) Watch Video Solution

20. Electric field at a point is measured in terms of
21. The unit of electric field in tensity is \qquad

D Watch Video Solution

22. The lines of force are far apart, when electric field E is

- Watch Video Solution

23. The lines of force are close together, when electric field E is

(D) Watch Video Solution

24. Electric dipole moment

- Watch Video Solution

25. Torque experienced by electric dipole is \qquad

- Watch Video Solution

26. An electric dipole placed in a non-uniform electric field at an angle θ experiences

D Watch Video Solution

27. When the dipole is aligned parallel to the field, its electric potential energy is
28. Change of potential with distance is known as

- Watch Video Solution

29. The number of electric lines of force crossing through a given area is

- Watch Video Solution

30. The process of isolating a certain region of space from external field is called

(D) Watch Video Solution

31. Capacitor is a device to store

- Watch Video Solution

32. The charge density is maximum at

(D) Watch Video Solution

33. The principle made use of an lightning arrester is

- Watch Video Solution

34. Van de Graaff generator producers large electrostatic potential difference of the order of
(i) Quantisation of charges
(a) $\int_{\infty}^{P}-\vec{E} \cdot d \vec{r}$
35. (ii)Electric field
(b) ne
(iii) Electric dipole moment
(c) $\frac{F}{q}$
(iv) Electric potential
(d) $2 q a$

- Watch Video Solution

(i)Positive and negative
(a) Michael Faraday
(ii) Electrostatic force
(b)Gauss
(iii) Concept of field
(c) Benjamin Franklin
(iv) q in arbitrary closed surface
(d) coulomb

- Watch Video Solution

(i) Electric dipole
(a)Ebonite
(ii) Dielectric
(iii)Polar molecules
(iv)Non-polar molecules
(b) H_{2}
(c) Ammonia
(d) $\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

(i)Electric charge
(a) Cm
(ii) Dipole moment
(b) $\mathrm{Nm}^{2} \mathrm{C}^{-1}$
(iii) Electric field (c) coulomb
(iv) electric flux
(d) $N C^{-1}$

- Watch Video Solution

Additional Questions Solved Iv Assertion And Reason Type

1. Assertion : Electric lines of force cross each other.

Reason: Electric field at a point supermpose to give one resultant electric field.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but the reason is not correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer:

- Watch Video Solution

2. Assertion : Charge is quantized .

Reason: Charge, which is less than 1 C is not possible .
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but the reason is not correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer:

(D) Watch Video Solution

3. Assertion: A point charge is brought in an electric field. The field at a nearby point will increases whatever be the nature of the charge.

Reason : the electric field is independent of the nature of charge.
A. If both assertion and reason are true and the reason is
the correct explanation of the assertion.
B. If both assertion and reason are true but the reason is not correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer:

(Watch Video Solution

4. Assertion : they tyre's of aircraft's are slightly conducting.

Reason: If a conductor is connected to ground, the extra charge induced on conductor will flow to ground.
A. If both assertion and reason are true and the reason is
the correct explanation of the assertion.
B. If both assertion and reason are true but the reason is not correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer:

(Watch Video Solution

5. Assertion: The lightening conductor at the top of a high building has sharp ends.

Reason : The surface density of charge at sharp points is very high. Resulting in setting up of electric wind.
A. If both assertion and reason are true and the reason is
the correct explanation of the assertion.
B. If both assertion and reason are true but the reason is not correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer:

- Watch Video Solution

Additional Questions Solved V Short Answer Questions

1. What is meant by triboelectric charging ?
2. What is meant by conservation of total charges ?

D Watch Video Solution

3. State Bragg's law.

- Watch Video Solution

4. Write a short note on electrostatic shielding .

- Watch Video Solution

5. What is meant by dielectric?
6. What are polar molecules ? Give examples.

(D) Watch Video Solution

7. What are polar molecules ? Give examples.

- Watch Video Solution

8. What is a capacitors?

D Watch Video Solution

Additional Questions Solved Vi Long Answer Questions

1. Assertion: A point charge is brought in an electric field. The field at a nearby point will increases whatever be the nature of the charge.

Reason : the electric field is independent of the nature of charge.

- Watch Video Solution

2. Derive an expression for electric flux of rectangular area placed in uniform electric field.

(D) Watch Video Solution

Additional Questions Solved Vii Numerical Problems

1. Electrons are caused to fall through a potential difference of 1500 volts. If they were initially at rest. Then calculate their final speed.

- Watch Video Solution

2. Small mercury drops of the same size are charged to the same potential V. If n such drops coalesce to form a single large drop, then calculate its potential.

D Watch Video Solution

3. Two particles having charges Q_{1} and Q_{2}, when kept at a certain distance, exert a force F on each other. If the distance
between the two particles is reduced to half and the charge on each particle is doubled. Find the force between the particles.

- Watch Video Solution

4. Two charges are placed in vacuum at a distance d apart. The force between them is F. if a medium of dielectric constant 2 is introduced between them, the force will now be

- Watch Video Solution

5. Find the force of attraction between the plates of a parallel plate capacitor.

- Watch Video Solution

