# ©゙’ doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - FULL MARKS PHYSICS (TAMIL

## ENGLISH)

## OPTICS

## In Text Solved Examples

1. Prove that when a reflecting surface of light
by an angle $\theta$, the reflected light will be tited

## by an angle 20.

## D Watch Video Solution

2. A man having height 6 m , want to see full
height in mirror. They observe image of 2 m height erect, then used mirror is

## D Watch Video Solution

3. An object is placed at a distance of 20.0 cm
from a concave mirror of focal length 15.0 cm .
(a) What distance from the mirror a screen should be placed to get a sharp image?
(b) What is the nature of the image?

## D Watch Video Solution

4. A thin rod of length $f / 3$ is placed along the optical axis of a concave mirror of focal length
$f$ such that its image which is real and elongated just touches the rod. Calculate the magnification
5. One type of transparent glass has refractive index 1.5. What is the speed of light through thi glass?

## - Watch Video Solution

6. Light travels from air into glass slab of thickness 50 cm and refractive index 1.5 .
(i) What is the speed of light in glass?
(ii) What is the time taken by the light to
travel through the glass slab?
(iii) What is the optical path of the glass slab?

## D Watch Video Solution

7. Light travelling through tranparent oil enters in to glass of refractive index 1.5. If the refractive index of glass with repect to the oil is 1.25 , what is the refractive index of the oil?

## D Watch Video Solution

8. A coin is at the bottom of a trough containing three immiscible liquids of refractive indies 1.3. 1.4 and 1.5. poured one above the other of height $30 \mathrm{~cm}, 16 \mathrm{~cm}$, and 20 cm respectively. What is the apparent depth at which the coin appers to be when seen from air medium outside? In which medium the coin will be seen?

- Watch Video Solution

9. What is the radius of the illumination when
seen above from inside a swimming pool from
a depth of 10 m on a sunny day? What is the total angle of view? [ Give refractive index of water is 4/3]

## - Watch Video Solution

10. A optical fiber is made up of a core material with refractive index 1.68 and a cladding material of refractive index 1.44 . What is the
acceptance angle of the fiber kept in air medium? What is the answer if there is no cladding?

## D Watch Video Solution

11. The thickness of a glass slab is 0.25 m . It has
a refractive index of 1.5 A ray of light is incident on the surface of the slab at an angle of $60^{\circ}$. Find the lateral displacement of the
light when it emerges from the other side of the mirror.

## Watch Video Solution

12. Locate the image of the point object $O$ in the situtaion shown. The point C denotes the centre of curvature of the separating surface.

- Watch Video Solution

13. Find the size of the image formed in the given figure.

14. A biconves lens has radil of curvature 20 cm and 15 cm each. The refractive index of the material of the lens is 1.5 . What is its focal length? Will the focal length change if the lens is fipped by the side?

## - Watch Video Solution

15. Determine the focal length of the lens made up of a material of refractive index 1.52
as shown in the diagram. ( Points $C_{1}$ and $C_{2}$
are the centers of curvature of the first and
second surface).

## D Watch Video Solution

16. If the focal length is 150 cm for a glass lens,
what is the power of the lens?

- Watch Video Solution

17. What is the focal length of the combination
if a lens of focal length - 70 c is brought in
contact with a lens of focal length 150 cm ?
What is the power of the combination?

## - Watch Video Solution

18. An object of 5 mm height is placed at a distance of 15 cm from a convex lens of focal

10 cm . A second lens of focal length 5 cm is
placed 40 cm from the first lens and 55 cm
from the object. Find
(a) the position of the final image.
(b) its nature and (c) its size.

## - Watch Video Solution

19. A monochromatic light is incident on as equallateral prism at an angle $30^{\circ}$ and emerge at an angle of $75^{\circ}$. What is the angle of deviation produced by the prism?
20. Light ray falls at normal incidence on the first face of an equilateral prism and emergres gracing the second face. What is the angle of deviation? What is the refractive indec of the material of the prism?

## - Watch Video Solution

21. The angle of minimum deviation for a prism
is $37^{\circ}$.If the angle of prism is $60^{\circ}$, find the refractive index of the material of the prism.

## - Watch Video Solution

22. Find the dispersive power of fint glass if the refractive indices of flint for red, green and violet light are 1.613, 1.620 and 1.632 respectively.

## - Watch Video Solution

23. The wavelenght of light from sodium
source in vacuum is $5893 \AA$ A. What are its (a)
wavelenght, (b) speed and (c) frequency when
this light travels in water which has a refractive index of 1.33.

## D Watch Video Solution

24. Two light sources with amplitudes 5 units
and 3 units respectively interfere with each
other. Calculate the ratio of maximum and minimum intensities.

- Watch Video Solution

25. Two light sources of equal amplitudes interfere with each other. Calculate the ratio of maximum and minimum intensities.

## - Watch Video Solution

26. Two light sources have intensity of light as
$I_{0}$, What is the intensity at a point where the two light waves have a phase difference of $\pi / 3 ?$
27. The wavelenght of a light is 450 nm . How phase it will differ for a path of 3 mm ?

## D Watch Video Solution

28. In Young's double silt experiment, the two
slits are 0.15 mm apart. The light source has a wavelenght of 450 nm . The screen is 2 m away from the slits.
(i) Find the distance of the second bright frings and also third dark frings from the
central maximum.
(ii) Find the fringe width.
(iii) How will the frings pattern change if the screen is moved away from the silis?
(iv) what will happen to the fringe width if the whole setup is immersed in water of refractive index 4/3.

## - Watch Video Solution

29. Two lights of wavelenght 560 nm and are used in Young's double slit experiment. Find
the least distance from the centeral fringe where the bright fringe of the two wavelenght coindes. Give $\mathrm{D}=1 \mathrm{~m}$ and $\mathrm{d}=3 \mathrm{~mm}$.

## D Watch Video Solution

30. Find the minimum thickness of a film of refractive index 1.25 , which will storngly reffect the light of wavelenght 589 nm . Also find the minimum thikness of the film to be anti reflecting.

## D Watch Video Solution

31. Light of wavelength 500 nm Pass through a slit of 0.2 mm wide. The diffraction pattern is formed on a screen 60 cm away. Determine the.
(i) angular spread of centeral maximum
(ii) the distance between the central maximum and the second minimum. ${ }^{`}=$

## - Watch Video Solution

32. A monochromatic light of wavelenght $5000 \AA$ passes through a single slit producing diffraction pattern for the central maximum as
shown in the figure. Determine that width of the slit.


D Watch Video Solution
33. Calculate the distance for which ray optics
is good aproximation for an aperture of 5 mm and wavelenght 500 nm .

## - Watch Video Solution

34. A diffraction grating consisting of 4000
slits per centimeter is illuminated with a monochromatic light that produces the second order diffraction at an angle of $30^{\circ}$. What is the wavelenght of the light used?
35. A monochromatic light of wavelenght of 500 nm strikes a grating and produces foruth order bright line at an angle $30^{\circ}$. Find the number of slits per centimeter.

## D Watch Video Solution

36. The optical telescope in the Vainu Bappu observatory at Kavalur has an objective lens of
diameter 2.3.m. What is its angular resolution
if the wavelenght of light used is 589 nm ?

## D Watch Video Solution

37. Two polaroids are kept with their transmission axes inclined at $30^{\circ}$. Unpolarised
light of intensity I falls on the first polaroid.

Find out the intensity of light emerging from the second polaroid.
38. Two polaroids are kept corssed
(transmission axes at $90^{\circ}$ ) to each other.
(i) What will be the intensity of the light coming out from the seond polaroid when an unpolarised light of intensity I falls on the first polaroid?
(ii) What will be the intensity of light coming out from the second polaroid if a thrid polaroid is kept at $45^{\circ}$ inclination to both of them.
39. A light travels from air into water, the angle of refraction is $25^{\circ}$ to the normal. Find the angle of incidence. Refractive index of water is $1.33 . \mu_{a}=1$

## - Watch Video Solution

40. What is the angle at which a glass plate of refractive index 1.65 is to be kept with respect to the horizontal surface so that an unpolarised light travelling horizontal after
reflection from the glass place is found to be plane polarised?

## D Watch Video Solution

41. A man with a near point of 25 cm reads a book small print using a maagnifying glass, a convex lens of focal length 5 cm .
(a) What is the closest and the farthest distance at which he should keep the lens
from the page so that he can read the book when viewing through the magnifying glass?
(b) what is the maximum and the minimum magnification (magnifying power) possible using the above simple microscope?

## - Watch Video Solution

42. A microscope has an object and eyepiece of focal lenghts 5 cm and 50 cm respectively with tube length 30 cm . Find the magnification of the microscope in the (i) near point and (ii) normal focusing.
43. A small telescope has an objective lens of
focal length 125 cm and an eyepiece of focal length 2 cm . What is the magnification of the telescope? What is the separation between the objective and eyepiece? Two stars separated by 1 ' will appear at what separation when viewed through the telescope?

## D Watch Video Solution

44. Calculate the power of lens of the spectacles necessary to rectify the defect of nearsightedeness fof a person who could see clearly only up to a distance of 1.8 m .

## - Watch Video Solution

45. A person has farsightedness with the minimum distance he could see early is 75 cm .

Calculate the poer of the spectacts necessary to recify the defect.

## Textual Evaluation Solved Multiple Choice

Questions

1. The speed of light in an isotropic medium depends on,
A. its intensity
B. its wavelenght
C. the nature of propagation
D. the motion of the source w.r.to medium

Answer: A

## D Watch Video Solution

2. A rod of length 10 cm lies along the principal axis of a concave mirror of focal length 10 cm in such a way that its end closer to the pole is 20 cm away from the mirror. The
length of the image is,
A. 2.5 cm
B. 5 cm

## C. 10 cm

## D. 15 cm

## Answer: C

## D Watch Video Solution

3. An object is placed in front of a convex mirror of focal length dof $f$ and the maximum and minimum distance of an object from the mirror such that the image formed is real and magnified.
A. $2 f$ and $c$
B. $c$ and $\infty$
C. f and O
D. None of these

## Answer:

## D Watch Video Solution

4. For light incident from air onto a slab of refractive index 2 . Maximum possible angle of refraction is,
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $90^{\circ}$

## Answer: C

## D Watch Video Solution

5. If the velocity and wavelength of light in air is $V_{a}$ and $\lambda_{a}$ and that in water is $V_{w}$ and $\lambda_{w}$ then the refractive index of water is,
A. $\frac{V_{w}}{V_{a}}$
B. $\frac{V_{a}}{V_{w}}$
C. $\frac{\lambda_{w}}{\lambda_{a}}$
D. $\frac{V_{a} \lambda_{a}}{V_{w} \lambda_{w}}$

Answer: A

## D Watch Video Solution

6. Stars twinkle due to
A. reflection
B. total internal reflection
C. refraction
D. polarisation

## Answer: A::C

## D Watch Video Solution

7. When a biconvex lens of glass having refractive index 1.47 is dipped in a liquid, it acts as a plane sheet of glass. This implies that the liquid must have refractive index,
A. less that one
B. less than that of glass
C. greater than that of glass
D. equal to that of glass

Answer: A

D Watch Video Solution
8. The radius of curvature of curved surface at
a thin planoconvex lens is 10 cm and the
refractive index is 1.5 . If the plane surface is
silvered, then the focal length will be,
A. 5 cm
B. 10 cm
C. 15 cm
D. 20 cm

Answer: A::C
( Watch Video Solution
9. An air bubble in glass slab of refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness of the slab is,
A. 8 cm
B. 10 cm
C. 12 cm
D. 16 cm

Answer: A::B::C

## - Watch Video Solution

10. A ray of light travelling in a transparent medium of refractive index n falls, on a surface separating the medium from air at an angle of incidents of $45^{\circ}$. The ray can undergo total internal reflection for the following n ,
A. $n=1.25$
B. $\mathrm{n}=1.33$
C. $\mathrm{n}=1.4$
```
D. \(\mathrm{n}=1.5\)
```


## Answer: A

## D Watch Video Solution

11. A plane glass is placed over a various
coloured letters (violet, green, yellow, red) The
letter which appears to be raised more is,
A. red
B. yellow
C. green
D. violet

## Answer:

## D Watch Video Solution

12. Two point white dots are 1 mm apart on a
black paper. They are viewed by eye of pupil
diameter 3 mm approximately. The maximum
distance at which these dots can be resolved
by the eye is, (take wavelength of light, $\lambda=500$ nm)
A. 1 m
B. 5 m
C. 3 m
D. 6 m

Answer:
( Watch Video Solution
13. In a Young's double-slit experiment, the slit separation is doubled. To maintain the same
fringe spacing on the screen, the screen-to-slit distance D must be changed to,
A. 2D
B. $\frac{D}{2}$
C. $\sqrt{2} D$
D. $\frac{D}{\sqrt{2}}$

Answer: B::D
14. Two coherent monochromatic light beams
of intensities I and 41 are superposed. The maximum and minimum possible intensities in the resulting beam are
A. 51 and I
B. 51 and 31
C. 91 and I
D. 91 and 31

## Answer: A::D

## - Watch Video Solution

15. When light is incident on a soap film of
thickness $5 \times 10^{-5} \mathrm{~cm}$, the wavelength of
light reflected maximum in the visible region is

5320 Å. Refractive index of the film will be,
A. 1.22
B. 1.33
C. 1.51

## D. 1.83

## Answer: A::C

## D Watch Video Solution

16. First diffraction minimum due to a single slit of width $1.0 \times 10^{-5} \mathrm{~cm}$ is at $30^{\circ}$. Then wavelength of light used is,
A. $400 \AA$
B. $500 \AA$

## C. $600 \AA$

D. $700 \AA$

## Answer:

## - Watch Video Solution

17. A ray of light strikes a glass plate at an angle $60^{\circ}$. If the reflected and refracted rays are perpendicular to each other, the refractive index of the glass is,
A. $\sqrt{3}$
B. $\frac{3}{2}$
C. $\sqrt{\frac{3}{2}}$
D. 2

Answer: C

D Watch Video Solution
18. One of the of Young's double slits is covered with a glass plate as shown in figure.

The position of central maximum will,

A. get shifted downwards
B. get shifted upwards
C. will remain the same

## D. data insufficient to conclude

19. Light transmitted by Nicol prism is,
A. partiallypolarised
B. unpolarised
C. plane polarised
D. ellitpically polarised

Answer: A::D

D Watch Video Solution
20. The transverse nature of light is shown in,
A. interference

B. diffraction

C. scattering
D. polarisation

## Answer: A

## Textual Evaluation Solved Short Answer Question

1. State the laws of reflection.
( Watch Video Solution
2. What is angle of deviation due to reflection?
(D) Watch Video Solution
3. Give the characteristics of image formed by
a plane mirror .

- Watch Video Solution

4. Derive the relation between $f$ and $R$ for $a$ spherical mirror.

- Watch Video Solution

5. What are the Cartesian sign conventions for a spherical mirror?

- Watch Video Solution

6. Obtain the equation for optical path of a medium of thickness $d$ and refractive index $n$.

## - Watch Video Solution

7. State the laws of refraction

## - Watch Video Solution

8. What is angle of deviation due to refraction?

## D Watch Video Solution

9. What is principle of reversibility?

- Watch Video Solution

10. What is relative refractive index?

## D Watch Video Solution

11. Obtain the equation for apparent depth.

D Watch Video Solution
12. Why do stars twinkle?
13. What is critical angle and total internal reflection?

D Watch Video Solution
14. Obtain the equation for critical angle.

## - Watch Video Solution

15. Explain the reason for glittering of diamond

## D Watch Video Solution

16. What are mirage and looming?

D Watch Video Solution
17. Write a short notes on the prisms making use of total internal reflection.

D Watch Video Solution

## 18. What is Snell's window?

## - Watch Video Solution

19. Write a note on optical fibre.

D Watch Video Solution
20. Explain the working of an endoscope.
21. What are primary focus and secondary focus of convex lens?

- Watch Video Solution

22. What are the sign conventions followed for lenses?

- Watch Video Solution

23. Arrives at lens equation from lens maker's
formula .

D Watch Video Solution
24. Obtain the equation for lateral magnification for thin lens.

## D Watch Video Solution

25. What is power of a lens?

## - Watch Video Solution

26. Derive the equation for effective focal length for lenses in out of contact.

## - Watch Video Solution

27. What is angle of minimum deviation?

- Watch Video Solution

28. What is dispersion?

## D Watch Video Solution

29. How are rainbows formed?

D Watch Video Solution
30. What is Rayleigh's scattering?

- Watch Video Solution

31. Why does sky appear blue?

## D Watch Video Solution

32. What is the reason for reddish appearance of sky during sunset and sunrise?

## D Watch Video Solution

33. Why do clouds appear white?
34. What are the salient features of corpuscular theory of light?
(D) Watch Video Solution
35. What is wave theory of light?
( Watch Video Solution
36. What is electromagnetic wave theory of light?

- Watch Video Solution

37. Write a short note on quantum theory of light.

## D Watch Video Solution

38. What is a wave front?

## - Watch Video Solution

39. What is Huygens' principle?

- Watch Video Solution

40. What is interference of light?

- Watch Video Solution

41. What is phase of a wave?

## - Watch Video Solution

42. Write the relation between path difference and phase difference?

## - Watch Video Solution

43. What are coherent sources?

- Watch Video Solution

44. What is intensity division?

## D Watch Video Solution

45. How does wavefront division provide coherent source?

## D Watch Video Solution

46. How do source and images behave as coherent sources?

## - Watch Video Solution

47. What is bandwidth of interference pattern?

- Watch Video Solution

48. What is diffraction?

- Watch Video Solution

49. Differentiate between Fresnel and

Fraunhofer diffraction.

- Watch Video Solution

50. Discuss the special cases on first minimum in Fraunhofer diffraction.

- Watch Video Solution

51. What is Fresnel's distance? Obtain the equation for Fresnel's distance.

D Watch Video Solution
52. Mention the differences between
interference and diffraction.

- Watch Video Solution

53. What is a diffraction grating?

## - Watch Video Solution

54. What are resolution and resolving power?

- Watch Video Solution

55. What is Rayleigh's criterion? .

## - Watch Video Solution

56. What is polarisation?

## - Watch Video Solution

57. Differentiate between polarised and unpolarised light

## - Watch Video Solution

58. Discuss polarisation by selective absorption.

## 59. What are polariser and analyser?

## - Watch Video Solution

60. What are partially polarised light?

D Watch Video Solution
61. State and obtain Malus' law.
62. List the uses of polaroids.

## D Watch Video Solution

63. State Brewster's law.

- Watch Video Solution

64. What is angle of polarisation and obtain
the equation for angle of polarisaition.
65. Discuss about pile of plates.

## - Watch Video Solution

66. What is double refraction?

- Watch Video Solution

67. Mention the types of optically active crystals with example.
68. Discuss about Nicol prism.

## D Watch Video Solution

69. How is polarisation of light obtained by scattering of light?
( Watch Video Solution
70. Discuss about simple microscope and obtain the equations for magnification for near point focusing and normal focusing.

## D Watch Video Solution

71. What are near point and normal focusing?

- Watch Video Solution


## 72. Why is oil immersed objective preferred in

## a microscope?

D Watch Video Solution
73. What are the advantages of using a reflecting telescope?

D Watch Video Solution
74. What is the use of an erecting lens in a terrestrial telescope?

D Watch Video Solution
75. What is the use of collimator?

## D Watch Video Solution

76. What are the users of spectometer?
77. What is myopia? What is its remedy?

- Watch Video Solution

78. What is hypermetropia?

## - Watch Video Solution

79. What is presbyopia?

## 80. What is astigmatism?

## - Watch Video Solution

## Textual Evaluation Solved Long Answer Question

1. Obtain the equation for lateral magnification for thin lens.

D Watch Video Solution

## 2. Describe the Fizeau's method to determine

 speed of light.
## - Watch Video Solution

3. Obtain the equation for radius of
illumination (or) Snell's window.
( Watch Video Solution
4. Derive the equation for acceptanc angle and numerical aperture, of optical fiber.

Acceptance angle in optical fibre:

## D Watch Video Solution

5. Obtian the equation for lateral
displacement of light passing through a glass slab.
6. Derive the equation for refraction at single spherical surface.

## - Watch Video Solution

7. Obtain lens maker's formula and medium its
signification. Lens maker's formula and lens
equation:

D Watch Video Solution
8. Obtain the equation for lateral magnification for thin lens.

D Watch Video Solution
9. Derive the equation for effective focal length for lenses in contact.

- Watch Video Solution

10. Derive the equation for angle of deviation produced by a prism and thus obtain the equation for refraction for refactive index of material of the prism.

## - Watch Video Solution

11. What is dipersion? Obtain the equation for dispersive power of a medium.
12. Prove laws of reflection using Huygens' principal.
(OR) Proof for laws of reflection using Huygens' Principal:

## D Watch Video Solution

13. Prove laws of refraction using Hugyen's principle.
14. Obtain the equaiton for resultant intensity due to interference of light.

## - Watch Video Solution

15. In Youngs double slit experiment, to increase the fringe width

## D Watch Video Solution

16. Obtain the equation for bandwidth in

Young's double slit experimeet.

Conditon for bright fringe (or) maxima

## - Watch Video Solution

17. Obtain the equaitons for constructive and destructive interference for transmitted and reflected waves in thin films. Interference in thin films:

D Watch Video Solution
18. Discuss diffraction at single slit and obtain
the consition for $n^{\text {th }}$ minimum. Diffraction at single slit:

## D Watch Video Solution

19. Discuss the diffraction at a grating and obtain the condition for the $n^{\text {th }}$ maximum.

## D View Text Solution

20. Discuss the experiment to determine the wavelenght of monochromatic light using diffraction grating.

Experiment to determine the wavelenght of monochromatic light:

## D Watch Video Solution

21. Discuss the experiment determine the wavelenght of different colours using diffraction grating.

Determination of wavelenght of diferent colours:

D Watch Video Solution
22. Obtain the equation fot resolving of optical instrument.

## - Watch Video Solution

23. Discuss about simple microscope and obtain the equation for magnificaiton for near
point focusing and normal focusing.

Simple microscope:

D Watch Video Solution
24. Explain about compound mircoscope and obtain the equation for magnification.

Compound microscope:

- Watch Video Solution

25. The resolving power of a microscope is
26. What is the use of astronomical telescope?

## - Watch Video Solution

27. Mention different parts of spectrometer and explain the prelimainary adjustments, Spectrometer:
28. Explain the experimental deterimental of material of the prism using spectrometer.

Determination of refractive index of material of the prism.

## D Watch Video Solution

## Textual Evaluation Solved Iv Conceptual Question

1. Why are dish antennas curved?
2. What type of lens is formed by a bubble inside water?

## - Watch Video Solution

3. It is possible for two lenses to produce zero power?

## - Watch Video Solution

4. The sky looks blue due to

## 5. Why is yellow light preferred to during fog?

## D Watch Video Solution

6. Two independent monochromatic sources
cannot act as coherent sources, why?

- Watch Video Solution

7. Does diffraction take place at the Young's double slit?

D Watch Video Solution
8. Is there any difference between coloured
light obtained from prism and colours of soap bubble?

D Watch Video Solution
9. Answer the following questions:
(c) When a tiny circular obstacle is placed in
the path of light from a distant source, a bright spot is seen at the centre of the shadow of the obstacle. Explain why?

## D Watch Video Solution

10. When a wave undergoes reflection at a denser medium, what happens to its phase?

## Textual Evaluation Solved V Numerical Problems

1. An object is placed at a certain distance
from a convex lens of focal length 20 cm . Find
the distance of the object if the image obtained is. magnified 4 times.

## - Watch Video Solution

2. A compound microscope has a magnification of 30 . The focal length of eye
piece is 5 cm . Assuming the final image to be at least distance of distinct vision, find the magnification . produced by the objective.

## D Watch Video Solution

3. An object is placed in front of a concave mirror of focal length 20 cm . The image formed is three times the size of the object.

Calculate two possible distances of the object from the mirror.

## D Watch Video Solution

4. A small bulb is placed at the bottom of a tank containing water to a depth of 80 cm .

What is the area of the surface of water through which light from the bulb can emerge out? Refractive index of water is 1.33 . (Consider the bulb to be a point source.)

## - Watch Video Solution

5. A thin converging glass lens made of glass
with refractive index 1.5 has a power of +5.0 D.

When this lens is immersed in a liquid of refractive index $n$, it acts as a divergent lens of focal length 100 cm . What must be the value of $n$ ?

## D Watch Video Solution

6. If the distance $D$ between an object and screen than 4 times the focal length of a convex lens, then there are two positions of
the lens for which image are formed on the screen. This method is called conjugate
method. If d is the distance between the two positions of the lens, obtain the equation for focal length of the convex lens.

## D Watch Video Solution

7. A beam of light of wavelength 600 nm from
a distant source falls on a single slit 1 mm
wide and the resulting diffraction pattern is
observed on a screen 2 m away. What is the
distance between the first dark fringe on either side of the central bright fringe?
8. In Young's double slit experiment, the slits are 2 mm apart and are illuminated with a mixture of two wavelength $\lambda_{0}=750 \mathrm{~nm}$ and $\lambda$
$=900 \mathrm{~nm}$. What is the minimum distance from
the common central bright fringe on a screen
2 m from the slits where a bright fringe from
one interference pattern coincides with a bright fringe from the other?
9. In Young's double slit experiment, 62 fringes
are seen in visible region for sodium light of
wavelength 5893 A. If violet light of wavelength $4359 \AA$ is used in place of sodium light, then what is the number of fringes seen?

## - Watch Video Solution

10. A compound microscope has a magnifying power of 100 when the image is formed at infinity. The objective has a focal length of 0.5
cm and the tube length is 6.5 cm . What is the focal length of the eyepiece.

## D Watch Video Solution

## Additional Quesiton Multiple Choice Questions

1. When a ray of light enters a glass slab from air
A. its wavelenght decreases
B. its wavelenght increases
C. its frequency increases
D. neither is wavelenght nor its frequency changes

## Answer: A::C::D

## D Watch Video Solution

2. A source emits sound of frequency 600 Hz inside water. The frequency heard in air (velocity of sound in water $=1500 \mathrm{~m} / \mathrm{s}$, velocity of sound in air $=300 \mathrm{~m} / \mathrm{s}$ ) will be
A. 300 Hz
B. 120 Hz
C. 600 Hz
D. 6000 Hz

## Answer:

## D Watch Video Solution

3. Two beams of red and violet colours are made to pass separately through a prism
(angle of the prism is $60^{\circ}$ ). In the position of
minimum deviation, the angle of refraction will be
A. $30^{\circ}$ for both the colours
B. greater for the violet colour
C. greater for the violet colour

## D. equal but not $30^{\circ}$ for both the colours

Answer: B::C

- Watch Video Solution

4. To get three images of a single obiect, one should have two plane mirror at an angle of
A. $60^{\circ}$
B. $90^{\circ}$
C. $120^{\circ}$
D. $30^{\circ}$

Answer:

D Watch Video Solution
5. Which of the following is used in optical fibres?
A. Total internal reflection
B. Diffraction
C. Refraction
D. Scattering

Answer: A::C

D Watch Video Solution

# 6. Two lenses of power - 15 D and +5 D are in 

 contact with each other. The focal length of the combination isA. +10
B. -20
C. -10
D. +20

Answer: A

D Watch Video Solution

## 7. The refractive index of glass is 1.520 for red

light and 1.525 for blue light. Let $\delta_{1}$ and $\delta_{2}$ angles of minimum deviation for red and blue light respectively in a prism of this glass, then
A. $\delta_{1}$. Can be less than or greater than $\delta_{2}$
depending upon the values of $\delta_{1}$ and $\delta_{2}$
B. $\delta_{1}>\delta_{2}$
C. $\delta_{1}<\delta_{2}$
D. $\delta_{1}=\delta_{2}$

## Answer:

## - Watch Video Solution

8. Time image formed by an objective of a compound microscope is
A. a) virtual and diminished
B. b) real and diminished
C. c) real and enlarged
D. d) virtual and enlarged

## Answer: A::D

## D Watch Video Solution

9. An astronomical telescope has a large aperture to,
A. a) reduce spherical aberration
B. b) have high resolution
C. c) increase span of observation
D. d) have low dispersion

Answer: A

## - Watch Video Solution

10. Two plane mirros are inclined to each other
at an angle of $60^{\circ}$. A point object is placed in
between them. The total number of images
produced by both the mirror is
A. 2
B. 4
C. 5
D. 6

## Answer:

## D Watch Video Solution

11. A boy 1.5 m tall with his eye level at 1.38 m stands before a mirror fixed on a wall. The minimum length of mirror required to view the complete image of boy is
A. 0.75 m

## B. 0.06 m

C. 0.69 m
D. 0.12 m

## Answer:

## D Watch Video Solution

12. A pencil of light rays falls on a plane mirror and forms a real image, so the incident rays are
A. a) parallel
B. b) diverging
C. c) converging
D. d) statement is false

## Answer: C

## D Watch Video Solution

13. For a real object, which of the following can produce a real image?
A. a) plane mirror
B. b) concave lens
C. c) convex lens
D. d) concave mirror

Answer: A::C

D Watch Video Solution
14. Which mirror is to be used to obtain a paralle beam of light from a small lamp?
A. a) plane mirror
B. b) Convex mirror
C. c) Concave mirror
D. d) None of the above

Answer: A::C

D Watch Video Solution
15. When a plane electromagnetic wave enters
a glass slab, then which of the following will not change?
A. a) Wavelength
B. b) Frequency
C. c) Speed
D. d) Amplitude

## Answer: C

## D Watch Video Solution

16. If wavelenght of light in air is $2400 \times 10_{-10}$
m , then what will be the wavelenght of light in
glass $(\mu=1.5) ?$
A. $1600 \AA$
B. $7200 \AA$
C. $1080 \AA$
D. None of these

Answer: A

## D Watch Video Solution

17. Why is refractive index in a transparent medium greater that one?
A. Because the speed of light in vacuum is
always less that speed in a transparent medium.
B. Because the speed of light in vacuum is
always greater than the speed in a transparent medium.
C. Frequency of wave changes when it crosses medium

D. None of these.

18. The wavelenght of sodium light in air is
$5890 \AA$. The velocity of light in air is
$3 \times 10^{8} \mathrm{~ms}^{-1}$ The wavelenght of light in a glass of refractive index 1.6 would be close to
A. $5890 \AA$
B. $3681 \AA{ }^{\AA}$
C. $9424 \AA$
D. $15078 \AA$

Answer: A::C

## D Watch Video Solution

19. A glass slab $(\mu=1.5)$ of thickness 6 cm is
placed over a paper. What is the shift in the letters?
A. 4 cm
B. 2 cm
C. 1 cm
D. None of these.

## Answer: B::C

## D Watch Video Solution

20. Light traveling from a transparent medium
to air undergoes that internal reflection at an
angle of incident of $45^{\circ}$. Then refractive index of the medium may be
A. 1.5
B. 1.3
C. 1.1

## D. $\frac{1}{\sqrt{2}}$

## Answer:

## D Watch Video Solution

21. A point source of light is placed 4 cm below
the surface of water of refractive index 5/3.

The minimum diameter of a disc which should be placed over the source, on the surface of water to cut - off all light coming out of water is
A. infnite
B. 6 cm
C. 4 cm
D. 3 cm

Answer:

- Watch Video Solution

22. In optical fibres, propagation of light is due
to
A. diffraction
B. total internal reflection
C. reflection
D. refraction

Answer: A::C

D Watch Video Solution
23. Sparking of diamond is due to
A. a) reflection
B. b) dispersion

## C. c) total internal reflection

D. d) high refractive index of diamond

## Answer: A::C

## D Watch Video Solution

24. For a given lens, the magnification was
found to be twice as large as when object was
0.15 m distant from it as when the distance
was 0.2 m . The focal length of the lens is
A. 1.5 m
B. 0.20 m
C. 0.10 m
D. 0.05 m

Answer: A

D Watch Video Solution
25. Two lenses of focal legths $f_{1}$ and $f_{2}$ are kept in contact coaxially. The resultant power of combination willl be
A. $\frac{f_{1} f_{2}}{f_{1}-f_{2}}$
B. $\frac{f_{1}+f_{2}}{f_{1} f_{2}}$
C. $f_{1}+f_{2}$
D. $\frac{f_{1}}{f_{2}}+\frac{f_{2}}{f_{1}}$

Answer: A::B

D Watch Video Solution
26. Two lenses of power 3D and -1D are kept in
contact. What is focal length and nature of
A. 50 cm , convex
B. 200 cm , convex
C. 50 cm , concave
D. 200 cm , concave

Answer: A::C

## D Watch Video Solution

27. If two thin lenses are kept coaxially together, then their power is proportonal ( $R_{1}, R_{2}$ being the radii of curved surfaces) to
A. $R_{1}+R_{2}$
B. $\left[\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right]$
C. $\left[\frac{R_{1} R_{2}}{R_{1} R_{2}}\right]$
D. none of these

Answer: A::B

D Watch Video Solution
28. A ray incident at $15^{\circ}$ on one refracting
surface of a prim of angle $60^{\circ}$, suffers a
deviation of $55^{\circ}$. What is the angle of emergance?
A. $95^{\circ}$
B. $45^{\circ}$
C. $30^{\circ}$
D. none of these

Answer:
(D) Watch Video Solution

## 29. Dispersion of light is caused due to

A. a) Wavelength
B. b) intensity of light
C. c) density of medium
D. d) none of these

Answer: A
30. White light is incident on one of the refracting surfaces of a prism of angle $50^{\circ}$. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively. The angular separation between these two colours when they emerge out of the prism is
A. $0.9^{\circ}$
B. $0.09^{\circ}$
C. $1.8^{\circ}$
D. $1.2^{\circ}$

## Answer:

## D Watch Video Solution

31. The sky would appear red instead of blue if
A. atmospheric particles scatter blue light more than red light
B. atmospheric particles scatter all colours
equally
C. atmospheric particle scatter red light more than blue light
D. the sun was much hotter

## Answer: A::B::C::D

## D Watch Video Solution

32. A setting sun appears to be at an altitude higher than it really is. This is because of
A. a) absorption of light
B. b) reflection of light
C. c) refraction of light
D. d) dispersion of light

## Answer: A::C

## D Watch Video Solution

33. The reddish appearance of rising and setting sun is due to
A. reflection of light
B. diffraction of light
C. scattering of light
D. interference of light

## Answer: A::C

## D Watch Video Solution

34. In the formation of a rainbow, the light from the sun on water droples undergoes
A. dispersion only
B. only total internal reflection
C. dispersion and total internal reflection
D. none of these

## Answer: A::B

## D Watch Video Solution

35. The angular magnification of a simple microscope can be increased by increasing
A. focal length of lens
B. size of object
C. aperture of lens
D. power of lens

## Answer:

## D Watch Video Solution

36. For compound microscope
$f_{0}=1 \mathrm{~cm}, f_{e}=2.5 \mathrm{~cm}$. An object is placed at
distance 1.2 cm from objective lens. What
should be length of microscope for normal adjustment?
A. 8.5 cm
B. 8.3 cm
C. 6.5 cm
D. 6.3 cm

Answer:

D Watch Video Solution
37. Magnifying power of an astronomical telescope for normal vision with usual notation is
A. a) $-f_{0} / f_{e}$
B. b) $-f_{0} \times f_{e}$
C. c) $-f_{e} / f_{0}$
D. d) $-f_{0}+f_{e}$

Answer:

D Watch Video Solution
38. $F_{1}$ and $F_{2}$ are focal length of objective and eyepiece respectively of the telescope. The angular magnification for the given telescope is equal to

> A. $\frac{F_{1}}{F_{2}}$
> B. $\frac{F_{2}}{F_{1}}$
> C. $\frac{F_{1} F_{2}}{F_{1}+F_{2}}$
> D. $\frac{F_{1}+F_{2}}{F_{1} F_{2}}$

Answer: A::B
39. Focal length of objective and eyepiece of telescope are 200 cm and 4 cm respectively.

What is length of telescope for normal adjustment?
A. 196 cm
B. 204 cm
C. 250 cm
D. 225 cm

## Answer: B::C::D

## D Watch Video Solution

40. For normal vision, eye the least distance of object from eye?
A. 30 cm
B. 25 cm
C. Infinite
D. 40 cm

## Answer: B::C

## - Watch Video Solution

41. The focal length of the objective and
eyepiece of a telescope are respectively 100 cm
and 2 cm . The moon subtends angle of $0.5^{\circ}$,
the angle subtended by the moon's image will be
A. $10^{\circ}$
B. $25^{\circ}$
C. $100^{\circ}$
D. $75^{\circ}$

Answer: B

## D Watch Video Solution

42. A person cannot clearly see distance more
than 40 cm . He is advised to use lens of power.
A. $-2.5 D$
B. 2.5 D

## C. $-6.25 D$

D. 1.5 D

## Answer: B::D

## D Watch Video Solution

43. The light gathering power of a camera lens
depends on
A. a) its diameter only
B. b) ratio of diameter and focal length

# C. c) product of focal length and diameter 

## D. d) wavelenght of the light used

## Answer:

## D Watch Video Solution

44. Amount of light entering into the camera depends upon
A. a) focal length of objective lens
B. b) product of focal length and diameter of the objective lens
C. c) distance of object from camera
D. d) aperture setting of the camera

Answer: A::C

D Watch Video Solution
45. Line spectrum can be obtained from
A. sun
B. candle
C. mercury vapour lamp
D. electic bulb

Answer: A::C

D Watch Video Solution
46. The production of band spectra is caused by
A. atomic nuclei
B. hot metals
C. molecules
D. electrons

## Answer:

## D Watch Video Solution

47. If two mirrors are kept at $60^{\circ}$ to each other and a body is placed at the middle, then total number of images formed is
A. six
B. four
C. five
D. three

## Answer:

## D Watch Video Solution

48. A point source kept at a distance of 1000 m
has a illumination I. To change the illumination
to $16 I$, the new distance should become
A. 250 m
B. 500 m
C. 750 m
D. 800 m

Answer: B

## D Watch Video Solution

49. A concave mirror of focal length 15 cm forms an image having twice linear
dimensions of the object. The position of the object when the image is virtual will be
A. 22.5 cm
B. 7.5 cm
C. 30 cm
D. 45 cm

Answer: C
( Watch Video Solution
50. When a ray of light enters a glass slab from air
A. its frequency and velocity change
B. only frequency changes
C. its frequency and wavelenght change
D. its frequency does not change

## Answer: A::C::D

## D Watch Video Solution

51. A light wave of frequency $\nu$ and wavelength
$\lambda$ travels from air to glass. Then,
A. $\nu$ changes
B. $\nu$ does not change $\lambda$. Changes
C. $\lambda$ does not change
D. $\nu$ and $\lambda$ change

Answer: A::B::C::D

D Watch Video Solution
52. In refraction, light waves are bent on passing from one medium to the second medium, because in the second medium.
A. the frequency is different
B. the coefficient of elasticity is different
C. the speed is different
D. the amplitude is smaller

Answer: D

D Watch Video Solution
53. A ray of light having wavelenght 720 nm enters in a glass of refractive index 1.5 The wavelenght of the ray within the glass will be
A. 360 nm
B. 480 nm
C. 720 nm
D. 1080 nm

Answer:

- Watch Video Solution

54. Brilliance of a diamond is due to
A. shape
B. cutting
C. reflection

## D. total internal reflection

Answer: A::C
55. An endoscope is employed by a physician to view the internal parts of a body organ. It is
based on the principle of
A. refraction
B. reflection of light
C. total internal reflection
D. dispersion of light

Answer: A::C

D Watch Video Solution
56. Mirage is formed due to
A. reflection of light
B. refraction of light
C. total internal reflection of light
D. diffraction of light

Answer: A::C
57. Two lenses of power + 12D and - 2D are combined together. What is their equivalent focal length?
A. 10 cm
B. 12.5 cm
C. 16.6 cm
D. 8.33 cm

Answer: A::C

D Watch Video Solution
58. If two lenses of power +1.5 and +1.0 D are
placed in contact, then the effective power of combination will be
A. 2.5 D
B. 1.5 D
C. 0.5 D
D. 3.25 D

Answer: B::D

D Watch Video Solution
59. The angle of a prism is $6^{\circ}$ and its refractive index for green light is 1.5 . If a green ray passes through it, the deviation will be
A. $30^{\circ}$
B. $15^{\circ}$
C. $3^{\circ}$
D. $0^{\circ}$

Answer: C

- Watch Video Solution

60. Sky appears to be blue in clear atmosphere due to light's

A. diffraction

B. dispersion

C. scattering

D. polarisation

Answer: A::C

D Watch Video Solution
61. One can not see through fog, because
A. fog absorbs the light
B. light suffers total reflection at droplets
C. refractive index of the fog is infinity
D. light is scattered by the droplets

Answer: A::B::C::D

- Watch Video Solution

62. Fraunhofer lines of the solar system is an example of
A. emission lines spectrum
B. emission band spectrum
C. continuous emission spectrum
D. line absorption spectrum

Answer: A::B
( Watch Video Solution
63. A person using a lens as a sample microscope sees an
A. inverted virtual image
B. inverted real magnified image
C. upright virtual image
D. upright real magnified image

Answer: A::D

D Watch Video Solution
64. Four lenses of focal length $+10 \mathrm{~cm},+50$
$\mathrm{cm},+100 \mathrm{~cm}$ and +200 cm are available for making an astronomical telescole. To produce
the largest magnification, the focal length of
the eyepiece should be
A. +10 cm
B. +50 cm
C. +100 cm
D. +200 cm

Answer: A::C
65. The camera lens has an aperture of $f$ and
the exposure time is $1 / 60 \mathrm{~s}$. What will be the new exposure time if the aperture become 1.4
f?

$$
\begin{aligned}
& \text { A. } \frac{1}{42} s \\
& \text { B. } \frac{1}{56} s \\
& \text { C. } \frac{1}{72} s \\
& \text { D. } \frac{1}{31} s
\end{aligned}
$$

## Answer:

## - Watch Video Solution

66. For a person near point of vision is 100 cm .

Then the power of lens he must wear so as
have normal vision, should be
A. $+1 D$
B. $-1 D$
C. $+3 D$
D. $-3 D$

## Answer: C::D

## D Watch Video Solution

67. Ray optics is valid, when characteristic dimensions are much larger than the wavelenght of light.
A. much smaller than the wavelenght of
light
B. much larger than the wavelenght of light
C. of the same order as the wavelenght of

## light

D. of the order of one millimetre

## Answer:

## D Watch Video Solution

68. A tall man of height 6 feet, want to see his
full image. Then required minimum length of the mirror will be
A. 12 feet
B. 3 feet
C. 6 feet
D. any length

## Answer: C

## D Watch Video Solution

69. The refractive index of water is 1.33 . What will be the speed of light in water?
A. $3 \times 10^{8} m s^{-1}$
B. $2.26 \times 10^{8} \mathrm{~ms}^{-1}$
C. $4 \times 10^{8} m s^{-1}$
D. $1.33 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: A::B

D Watch Video Solution
70. A beam of monochromatic light is refracted from vacuum into a medium of
refractive index 1.5. The wavelenght of refracted light will be
A. same
B. dependent on intensity of refracted light
C. larger
D. smaller

Answer: A::B::C::D

- Watch Video Solution


## 71. Optical fibers are based on

A. total internal reflection
B. less scattering
C. refraction
D. less absorption coefficient

Answer: A: C
72. A convex lens is dipped in a liquid, whose refractive index is equal to the refractive index of the lens. Then, its focal length will
A. become zero
B. becomes infinite
C. remain unchanged
D. become small, but non - zero

Answer: B::C

- Watch Video Solution

73. A convex lens and a concave lens, each
havaing same focal length of 25 cm , are put in
contact to from a combination of lenses. The power of the combination (in diopter) is
A. zero
B. 25
C. 50
D. infinite

## Answer:

## 74. The focal length of a converging lens is

 measured for violet, green and red colours. If is $f_{v}, f_{G}$ and $f_{R}$ respectively. We will getA. $f_{v}=f_{G}$
B. $f_{G}=f_{R}$
C. $f_{v}<f_{R}$
D. $f_{v}>f_{R}$

Answer:

# 75. Rainbow is formed due to combination of 

A. refraction and scattering
B. refraction and absorption
C. dispersion and total internal reflection
D. dispersion and focusing

Answer: A::C::D

D Watch Video Solution
76. The blue colour of the sky is due to the phenomenon of
A. scattering
B. dispersion
C. reflection
D. refraction

Answer: A::C

D Watch Video Solution
77. An astronomical telescope of ten fild angular magnification has a length of 44 cm . The focal length of the object is
A. 4 cm
B. 40 cm
C. 44 cm
D. 440 cm

## Answer: A::B::C::D

78. Exposure time of a camera lens at the $\frac{f}{2.8}$ setting is $\frac{1}{200}$ second. The correct time of exposure at $\frac{f}{5.6}$ is
A. 0.20 second
B. 0.40 second
C. 0.02 second
D. 0.04 second

## Answer: B::C::D

79. Which of the following is not due to total internal reflection?
A. Working of optical fibre
B. Difference between apparent and real
depth of a pond
C. Mirage on hot summer day
D. Brillance of diamond

Answer: A::B::C::D
80. An object is at a distance of 0.5 in front of
a plane mirror. Distance between the object and image is
A. 0.25 m
B. 0.5 m
C. 1.0 m
D. 2.0 m

Answer: A

- Watch Video Solution

81. An object moves towards a stationary plane mirror at a speed of $4 m s^{-1}$ with what speed will his image move towards him?
A. $2 m s^{-1}$
B. $4 m s^{-1}$
C. $8 m s^{-1}$
D. the image will stay at rest

Answer:
82. If two mirrors are kept at $60^{\circ}$ to each other and a body is placed at the middle, then total number of images formed is
A. six
B. four
C. five
D. three

Answer:
83. If an object is placed at 10 cm infront of a concave mirror of focal length 15 cm . The magnification of image is
A. -1.5
B. 1.5
C. -3
D. 3

## - Watch Video Solution

84. An object of length 2.5 cm is placed at the principal axis of a concave mirror at a distance 1.5 f . The image height is
A. $+5 m$
B. $-5 m$
C. $-10 m$
D. +10 m
85. Which of the following mirror is used by a dentist to examine a small cavity?
A. Concave mirror
B. Concave mirror
C. Combination of (a) and (b)
D. None of these

Answer: A::C
86. When a ray of light enters from one medium to another, then which of the following does not change?
A. Frequency
B. Wavelenght
C. Speed
D. Amplitude
87. When light travels from one medium to the other medium of which the refractive index is different, then which of the following will change?
A. Frequency, wavelength and velocity
B. Frequency and wavelength
C. Frequency and velocity
D. Wavelength and velocity

## - Watch Video Solution

88. The time taken by the light to cross a glass
of thickness 4 mm and refractive index
( $\mu=3$ ), will be
A. $4 \times 10^{-11} \mathrm{sec}$
B. $16 \times 10^{-11} \mathrm{sec}$
C. $8 \times 10^{-11} \mathrm{sec}$
D. $24 \times 10^{-11} \mathrm{sec}$

## D Watch Video Solution

89. The critical angle of a medium with respect
to air is $45^{\circ}$. The refractive index of medium is
A. 1.41
B. 1.2
C. 1.5
D. 2

## D Watch Video Solution

90. If the critical angle for total internal reflection from a medium to vacuum is $30^{\circ}$, then velocity of light in the medium is
A. $6 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
B. $2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
C. $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
D. $1.5 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

## D Watch Video Solution

91. When a ray of light enter from one medium
to another, its velocity is doubled. The critical
angle for the ray for two internal reflection will be
A. $30^{\circ}$
B. $60^{\circ}$
C. $90^{\circ}$

## D. Informatino is incomplete

## Answer: C

## D Watch Video Solution

92. A driver at a depth 12 m inside water $(\mu=4 / 3)$ see the sky in a cone of semivertical angle is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{4}{3}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{4}{3}\right)
\end{aligned}
$$

C. $\sin ^{-1}\left(\frac{3}{4}\right)$
D. $90^{\circ}$

## Answer: A::C::D

## D Watch Video Solution

## 93. The principal behind optical fibres is

A. total internal reflection
B. total external reflection
C. both (a) and (b)

## D. diffraction of light

## Answer: A::C

## D Watch Video Solution

## 94. Air bubble in water behaves as

A. some times conacave, sometimes convex
lens
B. concave lens
C. convex lens

## D. always refactnf surface

## Answer: A::C

## D Watch Video Solution

95. A convex lens of 40 cm focal length is
combined with a concave lens of focal length

25 cm . The power of combination is

$$
\text { A. }-1.5 D
$$

$$
\text { B. }-6.5 D
$$

## C. $+6.6 D$

$$
\text { D. }+6.5 D
$$

## Answer: A::D

## - Watch Video Solution

96. Two thin lenses, one of focal length +60
cm and the other of focal length -20 cm are put in contact, the combined focal length is,
B. -15 cm
C. -30 cm
D. 30 cm

## Answer: C

## D Watch Video Solution

97. How does refractive index $(\mu)$ of a material
vary with respect to wavelenght $(\lambda)$. (A and $B$ are constants).

> A. $\mu=A+\frac{B}{\lambda^{2}}$
> B. $\left.\mu=A+B \lambda^{2}\right)$
> C. $\mu=A+\frac{B}{\lambda}$
> D. $\mu=A=B \lambda$

Answer: A::B::D

## - Watch Video Solution

98. A prism of a refracting angle $60^{\circ}$ is made with a material of refractive index $\mu$. For a certain wavelength of light, the angle of
minimum deviation is $30^{\circ}$. For this
wavelength, the value of $\mu$ of material is
A. 1.82
B. 1.414
C. 1.503
D. 1.231

Answer: A::D
( Watch Video Solution
99. Refractive index of red and violet light are
1.52 and 1.54 respectively. If the angle of prism
in $10^{\circ}$. The angular dispersion will be
A. $0.02^{\circ}$
B. $0.20^{\circ}$
C. $3.06^{\circ}$
D. $30.6^{\circ}$

Answer: B

D Watch Video Solution
100. In a simple microscope, if the final image
is located at 25 cm from the eye placed close
to the lens, then magnifying power is

$$
\begin{aligned}
& \text { A. } \frac{25}{f} \\
& \text { B. } 1+\frac{25}{f} \\
& \text { C. } \frac{f}{25} \\
& \text { D. } \frac{F}{25}+1
\end{aligned}
$$

Answer: A::B

D Watch Video Solution
101. Magnification at least distance of distinct
vision is 25 cm of a simple microsope of focal
length 5 cm is
A. 2
B. 5
C. 4
D. 6

Answer:

D Watch Video Solution
102. Magnification of a compound is 30 . Focal
length of eyepiece is 5 cm and the image is
formed at a distance of distinct vision of 25
cm . The magnification of the objective lens is
A. 6
B. 5
C. 7.5
D. 10

## Answer:

103. The astronomical microscope consists of objective and eyepiece. The focal length of the objective is
A. equal to that of the eyepiece
B. shorter than that of the eyepiece
C. greater than that of the eyepiece
D. five times shorter than that of eyepiece
104. The number of lenses in terrestrial

## telescope is

A. 2
B. 4
C. 3
D. 6

## Answer: C

105. An achromatic combination of lenses is formed by joining
A. 2 convex lens
B. 1 convex, 1 concave lens
C. 2 concave lenses
D. 1 convex and 1 plane mirror

Answer: A::C
106. Amount of light entering into the camera depends upon
A. diameter only
B. ratio of focal length and diameter
C. product of focal length and diameter

D. only one of the focal length

## Answer: A::B::C::D

## D Watch Video Solution

107. Myopia is corrected by using a
A. cylindrical lens
B. bifocal lens
C. convex lens
D. concave lens

Answer: A::C

D Watch Video Solution
108. The critical angle for total internal reflection in diamond is $24.5^{\circ}$. The refractive index of diamond is
A. 2.41
B. 1.41
C. 2.59
D. 1.59

Answer:

D Watch Video Solution
109. When a glass lens with $\mu=1.47$ is
immersed in a troug of liquid, it looks to be disappeared. The liquid in the trough could be
A. water
B. keronsene
C. glycerine
D. alcohol

Answer: C

D Watch Video Solution
110. In optical fibres, the refractive index of the core is
A. greater than that of the cladding
B. equal to that of the cladding
C. smaller than that of the cladding
D. independent of that of the cladding

Answer: A::C::D

- Watch Video Solution

111. For a wavelength of light $\lambda$ and scattering object of size 'a', all wavelength are scattered nearly equally, if
A. $a=\lambda$
B. $a \gg \lambda$
C. $a \ll \lambda$
D. $a \geq \lambda$

## Answer: A::B::D

112. Two coherent monochromatic light beams
of intensities I and 41 are superposed. The
maximum and minimum possible intensities in
the resulting beam are
A. 51 and I
B. 91 and I
C. 51 and 31
D. 91 and 31

## Answer: A:D

113. In yound's double slit experiment, the separation between the slits is halved and distance between the slits and screen is doubled. The figure width is
A. unchanged
B. halved
C. doubled
D. quadrupled

## - Watch Video Solution

114. In a young 's double slit experiment, 12
fringes are observed to be formed in a certain segment of the screen, when light of wavelenght 600 nm is used. If the wavelenght of light is changed to 400 nm . Number of fringes observed in the same segment of the screen is given by
A. 12
B. 18
C. 24
D. 30

## Answer: A

## D Watch Video Solution

115. Consider fraunhoffer diffraction pattern obtained with a single slit illuminated at normal indicent. At the angular position of the
first diffraction minimum the phase different
between the wavelets from the opposite edge
of the slits is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $2 \pi$
D. $\pi$

Answer: B
( Watch Video Solution
116. A beam of light of wavelenght 600 nm
from a distant source falls on a single slit 1.00
nm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringes on either side of the central bright fringe is
A. 1.2 cm
B. 1.2 mm
C. 2.4 cm
D. 2.4 mm

## Answer: B::D

## D Watch Video Solution

117. A young's double slit experiment uses a monochromatic source. The shape of the interference fringes formed on a screen is
A. hyperbola
B. circle
C. straight line
D. parabola

## D Watch Video Solution

118. The initial shape of the wavelenght of the beam is
A. plannar
B. Convex
C. Concave
D. convex near the axis and concave near the periphery

## Answer: A

## D Watch Video Solution

119. The angle of incident at which reflected
light is totally polarised for reflection from air to glass (refractive index $\mu$ ) is

$$
\text { A. } \sin ^{-1}(\mu)
$$

B. $\sin ^{-1}\left(\frac{1}{\mu}\right)$
C. $\tan ^{-1}\left(\frac{1}{\mu}\right)$
D. $\tan ^{-1}(\mu)$

Answer: A

## - Watch Video Solution

120. According to Huygen's principal light is a front of
A. particle
B. rays
C. wave
D. none of the above

Answer: A

D Watch Video Solution
121. Which one of the following phenomena is
not explained by Huygen's construction of
wavefront?
A. refraction
B. reflection of light
C. diffraction
D. origin of spectra

Answer: A::C

- Watch Video Solution

Additional Quesiton li Additional Problems

1. Light from a point source in air falls on a spherical glass surface ( $\mathrm{n}=1.5$ and radius of curvature $=20 \mathrm{~cm})$. The distance of the light source from the glass surface is 100 cm . At what position the image is formed ?

## D Watch Video Solution

2. Find the value of critical angle for a material of refractive index $\sqrt{3}$.
3. The radius of curvature of each face of biconcave lens, made of glass of refractive index 1.5 is 30 cm . Calculate the focal length of the lens in air.

## - Watch Video Solution

4. The radii of curvature of the faces of a double convex lens are 10 cm and 15 cm . If focal length is 12 cm . What is the refractive index of glass?

## - Watch Video Solution

5. A double convex lens made of glass of refractive index 1.5 has both radii of curvature 20 cm each. Find the focal length of the lens. If an object is placed at a distance of 15 cm from this lens, find the position of the image formed.

## - Watch Video Solution

6. The image obtained with a convex lens is erect and its length is four times the length of the object. If the focal length of the lens is 20 cm , calculate the object and image distances.

## - Watch Video Solution

7. The radius of curvature of each surface of a convex lens of refractive index 1.5 is 40 cm .

Calculate its power.
8. A ray of light incident on an equilateral glass prism shows minimum deviation of $30^{\circ}$.

Calculate the speed of light through the prism.

## - Watch Video Solution

9. Two sources of intensity $I$ and 4 I are used in an interference experiment. Find the intensity at points where the waves from two sources
superimpose with a phase difference
(i) zero (ii) $\frac{\pi}{2}$ and (iii) $\pi$.

## D Watch Video Solution

10. Assume that light of wavelength $600 \AA$ is
coming from a star. What is the limit of resolution of telescope whose objective has a diameter of 100 inch?
11. Two polarising sheet have their polarising directions parallel so that the intensity of the trasmitted light in maximum. Through what angle must the either sheet be turned if the intensity is to drop by one- half?

## D Watch Video Solution

