©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

SAMPLE PAPER - 18 (UNSOLVED)

Part I

1. Two identical point charges'of magnitude $-q$ are fixed as shown in the figure below. A third
charge $+q$ is placed midway between the two charges at the point P. Suppose this charge is displaced a small distance from the point P in the directions indicated by the arrows, in which directions) will $+q$ be stable with respect to the displacement?

A. A_{1} and A_{2}
B. B_{2} and B_{2}
C. both drections

D. No stable

Answer: B

D Watch Video Solution

2. Two identical point charges'of magnitude $-q$ are fixed as shown in the figure below. A third charge $+q$ is placed midway between the two charges at the point P. Suppose this charge is displaced a small distance from the point P in the directions indicated by the arrows, in
which direction(s) will $+q$ be stable with

respect to the displacement?

A. finite and positive
B. infinite
C. finite and negative
D. zero

Answer: D
3. A carbon resistor of $(47 \pm 4.7) k \Omega$ to be marked with rings of different colours for its identification. The colour code sequence will be
A. Yellow-Green- Violet Gold
B. Yellow -Violet -Orange -Silver
C. Violet-Yellow - Orange Silver
D. Green-Orange- Violet Gold

- Watch Video Solution

4. A flat dielectric disc disc of radius R carries
an excess charge on its surface. The surface
charge density is σ. The disc rotates about an axis perpendicular to its plane passing through the center with angular velocity ω.

Find the magnitude of the torque on the disc if it is placed in a uniform magnetic field whose strength is B which is directed perpendicular to the axis of rotation
A. $\frac{1}{4} \sigma \omega \pi B R$
B. $\frac{1}{4} \sigma \omega \pi B R^{2}$
C. $\frac{1}{4} \sigma \omega \pi B R^{3}$
D. $\frac{1}{4} \sigma \omega \pi B R^{4}$

Answer: D

D Watch Video Solution

5. When a charged particle enters a uniform magnetic field its kinetic energy
A. remains constant
B. increases
C. decreases
D. becomes zero

Answer: D

D Watch Video Solution

6. When the current changes from $+2 A$ to $-2 A$ in 0.05 s , an emf of 8 V is induced in a coil is co-efficient of self-induction of the coil is
A. 0.2 H
B. 0.4 H
C. 0.8 H
D. 0.1 H

Answer: D

D Watch Video Solution

7. A coil area of cross section $0.5 m^{2}$ with 10
turns is in a plane which is perpendicular to an
uniform magnetic field of $0.2 \mathrm{~Wb} / \mathrm{m}^{2}$. The flux
through the coil is
A. 100 Wb
B. 10 Wb
C. 1 Wb
D. zero

Answer: C

D Watch Video Solution
8. Which of the following are false for electromagnetic waves
A. transverse
B. mechanical waves
C. longitudinal
D. produced by accelerating charges

Answer: C
(Watch Video Solution
9. When light is incident on a soap film of thickness $5 \times 10^{-5} \mathrm{~cm}$, the wavelength of light reflected maximum in the visible region is

5320 Å. Refractive index of the film will be,
A. 1.22
B. 1.33
C. 1.51
D. 1.83

Answer: B

10. A setting sun appears to be at an altitude
higher than it really is. This is because of
A. absorption of light
B. reflection of light
C. refraction of light
D. dispersion of light

Answer: C

D Watch Video Solution
11. If a light of wavelength 330 nm is incident on a metal with work function 3.55 eV , the electrons are emitted. Then the wavelength of
the emitted electron is (Take $h=6.6 \times 10^{-34}$
Js)
A. $<2.75 \times 10^{-9} m$
B. $\geq 2.75 \times 10^{-9} \mathrm{~m}$
C. $\leq 2.75 \times 10^{-12} m$
D. $<2.5 \times 10^{-10} \mathrm{~m}$

Answer: A
12. The ratio of the wavelength for the transition from $\mathrm{n}=2$ to $\mathrm{n}=1$ in $\mathrm{Li}^{++} . \mathrm{He}^{+}$ and H is
A. $1: 2: 3$
B. 1:4:9
C. $3: 2: 1$
D. $4: 9: 36$
13. The primary use of a zener diode is
A. Rectifier
B. Amplifier
C. Oscillator
D. Voltage regulator

Answer: D

14. The internationally accepted frequency deviation for the purpose of FM broadcasts.
A. 75 kHz
B. 68 kHz
C. 80 kHz
D. 70 kHz

Answer: A
(Watch Video Solution
15. The technology used for stopping the brain
from processing pain is
A. Precision medicine
B. Wireless brain sensor
C. Virtual reality
D. Radiology

Answer: C

D Watch Video Solution

1. Define 'electrostatic potential".

D Watch Video Solution

2. In a meter bridge, the value of resistance in
the resistance box is 10Ω. The balancing
length is $l_{1}=55 \mathrm{~cm}$. Find the value of dunknown resistance.

3. What is magnetic susceptibility ?

- Watch Video Solution

4. What do you mean by self-induction?

- Watch Video Solution

5. What is critical angle and total internal reflection?
6. Why we do not see the wave properties of a baseball?

D Watch Video Solution

7. Characol pieces of tree is found from an archeological site. The carbon - 14 content of
this characol is only 17.5% that of equivalent sample of carbon from a living tree. What is the age of tree?
8. Define electron motion in a semiconductor.

- Watch Video Solution

9. What is mean by fibre optic communication?

D Watch Video Solution

1. A sample of HCl gas is placed in a uniform electric field of magnitude $3 \times 10^{4} N . C^{-1}$.

The dipole moment of each HCl molecule is
$3.4 \times 10^{-39} \mathrm{Cm}$. Calculate the maximum torque experienced each HCI molecule.

D Watch Video Solution

2. If the resistance of coil is 3Ω at $20^{\circ} C$ and $\alpha=0.004 /{ }^{\circ} C$ then determine its resistance $\mathrm{t} 100^{\circ} C$.

3. Define magnetic field.

D Watch Video Solution

4. The magnetic flux passing through a coil perpendicular to is plane is a function of time and is given by $\Phi_{B}=\left(2 t^{3}+4 t^{2}+8 t+8\right)$

Wb. If he resistance of the coil is 5Ω, determine the induced current through the coil at a time $t=3$ second.
5. Write down the concept of black body spectrum.
(Watch Video Solution
6. Why do clouds appear white?

- Watch Video Solution

7. Write the relationship of de Broglie wavelength λ associated with a particle of mass m in terms of its kinetic energy K .

- Watch Video Solution

8. Calculate the energy equivalent of 1 atomic mass unit.

- Watch Video Solution

9. A transmitting antenna has a height of 40 m

and the height of the receiving antenna is 30
m . What is the maximum distance between
them for line-of-sight communication? The radius of the earth is $6.4 \times 10^{6} \mathrm{~m}$

- Watch Video Solution

1. Explain dielectrics in detail and how an electric field is induced inside a dielectric .

- Watch Video Solution

2. Explain the equivalent resistance of a series
and parallel resistor network.

D Watch Video Solution
3. Show the time period of oscillation when a bar magnet is kept in a uniform magnetic field is $\mathrm{T}=2 \pi \sqrt{\frac{l}{p_{m} B}}$. In second, where । represents moment of inertia of the bar magnet, p_{m} is the magnetic moment and is the magnetic field.

D Watch Video Solution

4. Find out the phase relationship between
voltage and current in a pure inductive circuit.

- Watch Video Solution

5. Obtian the equation for lateral displacement of light passing through a glass slab.

D Watch Video Solution

6. Explain the quantum concept of light.
7. Discuss the spectral series of hydrogen atom.

D Watch Video Solution

8. Describe the function of a transistor as an amplifier with the neat circuit diagram. Sketch the input and output wave form.

o
 Watch Video Solution

9. Elaborate on the basic elements of communication system with the necessary block diagram.

- Watch Video Solution

10. Comment on the recent advancement in medical diagnosis and therapy.

D Watch Video Solution

