©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

SAMPLE PAPER -14 (UNSOLVED)

Part I

1. Four Gaussian surface are given below with
charges inside each Gaussian surface . Rank
the electric flux through each Gaussian surface
in increasing order

A. $D<C<B<A$
B. $A<B=C<D$
C. $C<A=B<D$
D. $D>C>B>A$

Answer:

- Watch Video Solution

2. A $4 \mu \mathrm{~F}$ capacitor is charged to 400 V and then its plates are joined through a resistance of $1 \mathrm{~K} \Omega$. The heat produced in the resistance is
A. 0.16 J
B. 0.32 J
C. 0.64 J

D. 1.28 J

Answer:

D Watch Video Solution

3. In a large building, there are 15 bulbs, of

40W, 5bulbs, of $100 \mathrm{~W}, 5$ fans of 80 W and 1
heater of 1 kW are connected. The voltage of electric mains is 220 V . The minimum capacity of the main fuse of the builing will be
B. $8 A$
C. $10 A$
D. $12 A$

Answer:

D Watch Video Solution

4. A wire of length I carries a current I along the Y direction and mgnetic field is given by $\vec{B}=\frac{\beta}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$ T. The magnitude of

Lorentz force acting on the wire is
A. $\sqrt{\frac{2}{\sqrt{2}}} \beta I l$
B. $\sqrt{\frac{1}{\sqrt{3}}} \beta I l$
C. $\sqrt{2} \beta I l$
D. $\sqrt{\frac{1}{2}} \beta I l$

Answer:

D Watch Video Solution

5. The magnetic field due to a current carrying circular coil on the axis, at a large distance r
from the centre of the coil, varies

approximately as

> A. $\frac{1}{r}$
> B. $\frac{1}{r^{\frac{3}{2}}}$
> C. $\frac{1}{r^{3}}$
> D. $\frac{1}{r^{2}}$

Answer:
(Watch Video Solution
6. A circular coil with a cross-sectional area of
$4 \mathrm{~cm}^{2}$ has 10 turns $/ \mathrm{cm}$. It is placed at the centre of a long solenoid that has 15 turns $/ \mathrm{cm}$ and a cross-sectional area of $10 \mathrm{~cm}^{2}$. The axis of the coil coincides with the axis of the solenoid. What is their mutual inductance?
A. $7.54 \mu H$
B. $8.54 \mu H$
C. $9.54 \mu H$
D. $10.54 \mu H$

Answer:

- Watch Video Solution

7. Consider an oscillator which has a charged prarticle and oscillates about its mean position with a frequency of 300 MHz . The wavelength of electromagnetic waves produced by this oscillator is
A. 1 m
B. 10 m

C. 100 m

D. 1000 m

Answer:

(Watch Video Solution

8. Which of the following has maximum frequency?
A. X-rays
B. IR rays

C. UV rays

D. Radio waves

Answer:

D Watch Video Solution

9. A ray of light travelling in a transparent medium of refractive index n falls, on a surface separating the medium from air at angle of incidents of 45°. The ray can undergo total internal reflection for the following n,
A. $n=1.25$
B. $\mathrm{n}=1.33$
C. $n=1.4$
D. $n=1.5$

Answer:

D Watch Video Solution

10. The work functions for metals A, B and Care
$1.92 \mathrm{eV}, 2.0 \mathrm{eV}$ and 5.0 eV respctively. The
metals which will emit photoelectrons for a radiation of wavelength $4100 \AA$ is / are
A. A only
B. both A and B
C. all these metals
D. none

Answer:
(Watch Video Solution

11. The charge of cathode rays is

A. positve

B. negative

C. neutral
D. not defined

Answer:
12. Doping a semiconductor results in
A. The decrease in mobile charge cuarriers
B. The change in chemical properties
C. The change in the crystal structure

D. The breaking of the covalent bond

Answer:

13. Holes are charge carrier in

A. intrinsic semicondu
B. ionic solids
C. p-type semiconductor
D. metals

Answer:

14. The frequency range of 3 MHz to 30 MHz is used for
A. Ground wave propagation
B. Space wave propagation
C. Sky wave propagation
D. Satellite communication

Answer:
(D) Watch Video Solution
15. The laws of Robotics are
A. a robot may not injure a human being
B. a robot must obey the order given by
human
C. a root must protect its own existence
D. both b and c

Answer:

D Watch Video Solution

1. Calculate the number of electrons in one coulomb of negative charge.

D Watch Video Solution
2. What are ohmic and non ohmic devices ?

D Watch Video Solution

3. Define Current sensitivity?

D Watch Video Solution

4. What for an inductor is used ? Given some examples.
(D) Watch Video Solution
5. What is astigmatism?
6. Write the expression for the de Broglie wavelength associated with a charged particle of charge q and mass m, when it is accelerated through a potential V .

D Watch Video Solution

7. Define curie.

8. Consider an ideal juction diode. Find the value of current flowing through $A B$ is

D Watch Video Solution
9. Give any two examples for "Nano" in nature.

D Watch Video Solution

1. Give the relation between electric field and electric potential .

- Watch Video Solution

2. When two resistances connected in series and parallel their equivalent resistances are 15Ω and $\frac{56}{15} \Omega$ respectively. Find the individual resistances.

3. State Biot-Savart's law.

D Watch Video Solution

4. Two air core solenoids have the same
lengdth of 80 cm and same cross-sectional area $5 \mathrm{~cm}^{2}$. Find the mutual inductance between them if the number of turns in the first coil is 1200 turns and that in the second coil is 400 turns.
5. Write down the integral form of modified

Ampere's circuital law.

- Watch Video Solution

6. Differentiate between polarised and unpolarised light

- Watch Video Solution

7. What should be the velocity of the electron

 so that its momentum equals of $4000 \AA$ wavelength photon.
- Watch Video Solution

8. Distinguish between avalanche and zener breakdown.

- Watch Video Solution

9. Write down the advantages and limitations of frequency modulation (FM)? Advantages of

FM

D Watch Video Solution

10. Derive the expression for resultant capacitance when capacitors are connected in series and in parallel.

1. Explain the equivalent resistance of a series

 and parallel resistor network.
D Watch Video Solution

2. Find the magnetic induction due to a long
straight conductor using Ampere's circuital
law.
3. Using Faraday's law of electromagnetic induction, derive an equation for motional emf.

D Watch Video Solution

4. Obtain the equation fot resolving of optical
instrument.

D Watch Video Solution

5. Explain in detail the nuclear force.

- Watch Video Solution

6. Describe an experimental arrangement to study photoelectric effect.

- Watch Video Solution

7. Write notes on Photodiode.
8. What do you know about GPS? Write a few applications of GPS.

D Watch Video Solution
9. Write the key components of robot.

D Watch Video Solution

