©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - FULL MARKS PHYSICS (TAMIL

ENGLISH)

SAMPLE PAPER-05 (SOLVED)

Part I

1. An electric dipole is placed at an alignment
C^{-1}. It experiences a torque equal to 8 Nm .

The charge on the dipole if the dipole length
is 1 cm is
A. 4 mC
B. 8 mC
C. 5 mC
D. 7 mC

Answer: B

D Watch Video Solution

2. Dielectric constant of metals is

A. 1
B. gre greater then 1
C. zero
D. infinite

Answer: D

D Watch Video Solution
3. Two wires of A and B with cirular cross section made up of the same material with equal lengths.Suppose $R_{A}=3 R_{B}$, then what is the ratio of radius of wire A to that of B ?
A. 3
B. $\sqrt{3}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{3}$

Answer: C

4. A circular coil of radius 5 cm and has 50 turns carries a current of 3 ampere. The magnetic dipole moment of the coil is
A. $1.0 a m p-m^{2}$
B. $1.2 a m p-m^{2}$
C. $0.5 a m p-m^{2}$
D. $0.8 a m p-m^{2}$

Answer:
5. A straight conductor carrying a current I , is split into a circular loop of radius r as shown in the figure. The fied at the centre O of the circle, in tesla is
A. $\frac{\propto_{0} I}{2 r}$
B. $\frac{\mu_{0} I}{2 \pi r}$
C. $\frac{\mu_{0} I}{\pi r}$
D. zreo

Answer: D

D Watch Video Solution

6. The flux linked with a coil at any instant t is
given by $\Phi_{B}=10 t^{2}-50 t^{2}-50 t+250$. The
induced emf at $t=3 s$ is
A. -190 V
B. -10 V
C. 10 V
D. 190 V

Answer: B

- Watch Video Solution

7. Quantity that remains unchanged in a transformer is
A. (a) voltage
B. (b) current
C. (c) frequency
D. (d) none of these

Answer: C

D Watch Video Solution

8. the electric and the magnetic field, associated with an electromagnetic wave, propagating along X axis can be represented by

$$
\begin{aligned}
& \text { A. } \vec{E}=E_{0} \hat{j} \text { and } \vec{B}=B_{0} \hat{k} \\
& \text { B. } \vec{E}=E_{0} \hat{k} \text { and } \vec{B}=B_{0} \hat{j} \\
& \text { C. } \vec{E}=E_{0} \hat{i} \text { and } \vec{B}=B_{0} \hat{j}
\end{aligned}
$$

$$
\text { D. } \vec{E}=E_{0} \hat{j} \text { and } \vec{B}=B_{0} \hat{j}
$$

Answer: B

D Watch Video Solution

9. A ray of light strikes a glass plate at an
angle 60°. If the reflected and refracted rays
are perpendicular to each other, the refractive index of the glass is,
A. $\sqrt{3}$
B. $\frac{3}{2}$
C. $\sqrt{\frac{3}{2}}$
D. 2

Answer: A

D Watch Video Solution

10. For light incident from air onto a slab of refractive index 2. Maximum possible angle of refraction is,
A. 30°
B. 45°
C. 60°
D. 90°

Answer: A

- Watch Video Solution

11. A light of wavelength 500 nm is incident on
a sensitive plate of photoelectric work function 1.235 eV . The kinetic energy of the
photo electrons emitted is be (Take $\mathrm{h}=$ $\left.6.6 \times 10^{-34} \mathrm{Js}\right)$
A. 0.58 eV
B. 2.48 eV
C. 1.24 eV
D. 1.16 eV

Answer: C

- Watch Video Solution

12. In a hydrogen atom, the electron revolving
in the fourth orbit, has angular momentum equal to
A. h
B. $\frac{h}{\pi}$
C. $\frac{4 h}{\pi}$
D. $\frac{2 h}{\pi}$

Answer: D

D Watch Video Solution
13. The barrier potential of a silicon diode is approximately.
A. 0.7 V
B. 0.3 V
C. 2.0 V
D. 2.2 V

Answer: A

D Watch Video Solution
14. The signals is affected by noise in communication system
A. At the transmitter
B. At the modulator
C. In the channel
D. At the receive

Answer: C

D Watch Video Solution

15. An atom contains particles such as

 protons, neutrons and electrons.A. Higgs particle
B. Einstein particle
C. Nanoparticle
D. Bulk particle

Answer: A
(Watch Video Solution

1. Define 'electrostatic potential".

D Watch Video Solution
2. Define temperature coefficient or resistance.

D Watch Video Solution
3. The self-inductance of an air-core solenoid is
4.8 mH . If its core is replaced by iron core, then
its self-inductance becomes 1.8 H . Find out the relative permeability of iron.

- Watch Video Solution

4. What is meant by Fraunhofer lines?

- Watch Video Solution

5. What is power of a lens?

D Watch Video Solution

6. Calculate the cut-off wavelength and cutoff
frequency of x-rays from an x-ray tube of accelerating potential $20,000 \mathrm{~V}$.

- Watch Video Solution

7. What is mass defect?

- Watch Video Solution

8. Simplify the Boolean identify
$A C+A B C=A C$

- Watch Video Solution

9. Whatdo you mean by Internet of Things?

D Watch Video Solution

1. Give the relation between electric field and electric potential.

- Watch Video Solution

2. A copper wire of $10^{-6} m^{2}$ are of cross section, carries a current of 2 A . If the number of electrons per cubic meter is 8×10^{28}, calculate the current density and average drift velocity.
3. Compare dia, para and ferromagnetism.

D Watch Video Solution

4. State Faraday's laws of electromagnetic induction.

D Watch Video Solution
5. Why does sky appear blue?
6. Write down the postulates of Bohr atom model.

- Watch Video Solution

7. State De Morgan's first and second theorems.

D Watch Video Solution
8. Write down the advantages and limitations of amplitude modulation (AM)? Advantages of

AM

- Watch Video Solution

9. What are black holes?

- Watch Video Solution

Part lv

1. Derive an expression for the torque experienced by a dipole due to a uniform electric field.

D Watch Video Solution

2. Explain the determination of the internal resistance of a cell using voltmeter.
3. What is the magnetic field along the axis and equatorial line of a bar magnet ?

- Watch Video Solution

4. How will you induce an emf by changing the area enclosed by the coil? Induction of emf by changing the area of the coil:

- Watch Video Solution

5. Write down Maxwell equations in integral form.

D Watch Video Solution
6. Obtain lens maker's formula and medium its
signification. Lens maker's formula and lens
equation:

D Watch Video Solution
7. Briefly discuss the observations of Hertz, Hallwachs and Lenard. Hertz observation:

- Watch Video Solution

8. Obtain the law of radioactivity. Law of radioactive decay
9. Describe the function of a transistor as an amplifier with the neat circuit diagram.Sketch the input and output wave form.

D Watch Video Solution

10. Explain the three modes of propagation of electromagnetic waves through space.

- Watch Video Solution

