©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - HC VERMA PHYSICS

(ENGLISH)

GAUSS LAW

Example

1. A square frame of edge 10 cm is placed with
its positive normal making on angle of 60^{0}
with a uniform electric field of $20 \mathrm{Vm}^{-1}$. Find
the flux of the electric field through the surface bounded by the frame.

D Watch Video Solution

2. A charge q is placed st the centre of a spher.

Taking outward normal as positive, find the
flux of the electric field through the surface of the sphere due to the enclosed charge.

D Watch Video Solution

3. A uniform electric field exists in space. Find
the flux of this field through a cylindrical surface with the axis parallel to the field.

D Watch Video Solution

4. A Charge Q is distributed uniformly on a ring of radius r. A sphere of equal r is constructed with its centre at the periphery of the ring (figure 30.12) Find the flux of the electric field through the surface of the
sphere.
Ring

(D) Watch Video Solution

Work Out Exaples

1. A uniform electric field of magnitude
$E=100 N C^{-1}$ exists in the space in x -
direction. Calculate the flux of this field through a plane square of edga 10 cm placed in the y-z plane. Take the normal along the positive x-axis to be positive.

D Watch Video Solution

2. A large plane charge sheet having surface xharge density $\sigma=2.0 \times 10^{-6} \mathrm{Cm}^{-2}$ lies in
the $x-y$ plane. Find the flux of the electric field
through a circular area of radius 1 cm lying completely in the region where x, y, z are all
positive and with its normal making an angle of 60° with the z-axis.

D Watch Video Solution

3. A Charge of $4 \times 10^{-8} C$ is distributed uniformaly on the surface of a sphere of radius 1 cm . It is covered by a concentric, hollow conducting sphere of radius 5 cm . (a)

Find the electric field at a point 2 cm away from the centre. (b) A charge of $6 \times 10^{-8} C$ is placed on the hollow sphere. Find the surface
charge density on the outer surface of the hollow sphere.

D Watch Video Solution

4. Figure shows three concentric thin spherical shells A, B and C of radii a, b and c respectively.

The shells A and C are given charges q and $-q$ respectively and the shell B is earthed. Find the charges appearing on the surfaces of B
and C.

D Watch Video Solution

5. An electric dipole consists of charges $\pm 2.0 \times 10^{8} C$ separated by a distance of $2.0 \times 10^{-3} \mathrm{~m}$. It is placed near a long ilne charge of linear charge density $4.0 \times 10^{-4} \mathrm{Cm}^{-1}$ as shown in figure (30-W4),

Such thet the negative charge is at a distance of 2.0 cm from the line charge. Find the force acting on the dipole.

- Watch Video Solution

6. The electric field in aregion is radially ourward with magnitude $E=A r$. Find the charge contained in a sphere of radius a
centred at the origin. Take $A=100 \mathrm{Vm}^{-2}$ and $a=20.0 \mathrm{~cm}$.

- Watch Video Solution

7. A particle of mass $5 \times 10^{-6} g$ is kept over a large horizantal sheet of charge of denisity
$4.0 \times 10^{-6} \mathrm{Cm}^{-2} \quad$ (Figure $\quad 30-\mathrm{W} 5$). What charge should be given to this partical so that if released, it does not fall down? How many electrons are to be removed to give this charge? How much mass is decreased due to
the removal of these electrons?

D Watch Video Solution

8. Two conducting plates A and B are placed parallel to each other. A is given a charge. Q_{1} and B a charge Q_{2}. Find the distribution of charges on the four surface.

-
 Watch Video Solution

Objective 1

1. A charge Q is uniformly distributed over a
large plastic plate. The electric field at a point P close to the centre of the plate is $10 \mathrm{Vm}^{-1}$.

If the plastic plate is replaced by a copper plate of the same geometrical dimension and carrying the same charge Q the electric field at the point P will become
A. zero

$$
\text { B. } 5 \mathrm{Vm} m^{-1}
$$

C. $10 \mathrm{Vm}^{-1}$

$$
\text { D. } 20 \mathrm{Vm}^{-1}
$$

Answer: C

D Watch Video Solution

2. A metallic sphere having no net charge is
placed near a finite metal plate carrying a positive charge. The electric force on the sphere will be
A. towards the plate
B. away from the plate
C. parallel to the plate
D. zero.

Answer: A

D Watch Video Solution
3. A thin. Metallic spherical shell contains
charge Q on it. A point charge q is placed at
the centre of the shell and another charge q_{1}
is placed outside it as shown in figure. All the
three charges are positive. The force on the charge at the centre is

$\stackrel{\bullet}{q}_{1}$
A. towards left
B. towards right
C. upward
D. zero.

Answer: D

D Watch Video Solution

4. Electric charge are distributed in a small volume. The flux of the electric field through a spherical surface of radius 10 cm surrounding the total charge is 25 V . The flux over a concentric sphere of radius 20 cm will be A. 25 V m
B. 50 V m

C. 100 V m

D. 200 V m.

Answer: A

- Watch Video Solution

5. Figure shown an imaginary cube of edge $\mathrm{L} / 2$.

A uniformly Charged rod of length L moves
towards left at a small but constant speed v .

At $t=0$, the left end just touches the centre of
the cube opposite it. Which of the graphs shown in figure represents the flux of the electic field through the cube as the rod goes through it?

D Watch Video Solution

6. A charge q is placed at the centre of the open end of a cylindrical vessel. The flux of the electric field through the surface of the vessel

A. zero
B. $\frac{q}{\varepsilon_{0}}$
C. $\frac{q}{2} \varepsilon_{0}$
D. $2 \frac{q}{2} \varepsilon_{0}$.

Answer: C

Objective 2

1. Mark the correct option:
A. Option 1 Gauss's law is valid only for
symmetrical charge distributions.
B. Option 2 Gauss's law is valid only for
charge placed in vacuum.
C. Option 3 The electric field calculated by

Gauss's law is the field due to the charges inside the Gaussian surface. D. Option 4 The flux of the electric field
through a closed surface due to all the
charges is equal to the flux due to the charges enclosed by the surface.

Answer: D

D Watch Video Solution

2. A positive point charge Q is brought near an isolated metal cube then what will happen to the charge of cube?
A. The cube becomes negatively charged.
B. The cube becomes positively charged.
C. The interior becomes positively charged
and the surface becomes negatively
charged.
D. The interior remains charge free and the
surface gets onouniform charge

distribution.

Answer: D

D Watch Video Solution

3. A large nonconducting sheet M is given a
uniform charge density. Two unchared small metal rods A and B are placed near the sheet
as shown in figure

B

A. M attracts A.
B. M attracts B.
C. A attracts B.
D. B attracts A.
4. If the flux of the electric field through a closed surface is zero,
A. the electric field must be zero
everywhere on the surface
B. the electric field may be zero everywhere on the surface
C. the charge inside the surface must be

D. the charge in the vicinity of the surface

 must be zero.
Answer: B::C

D Watch Video Solution

5. An electric dipole is placed at the centre of a sphere. Mark the correct options:
A. The flux of the electric field through the
the sphere is zero.
B. The electric field is zero at every point of the sphere.
C. The electric field is not zero anywhere on
the sphere.
D. The electric field is zero on a circle on
the sphere.

Answer: A::C

- Watch Video Solution

6. Figure shows a charge q placed at the centre of a hemisphere. A second charge Q is placed at one of the positions A, B, C and D. In which position(s) of this second charge, the
flux of the electric field through the hemisphere remains unchanged?

A. A
B. B
C. C
D. D

Answer: A::C

D Watch Video Solution

7. A closed surface S is constructed around a conducting wire connected to a battery and a switch (figure 30-Q6). As the switch is closed, the free electrons in the wire start moving along the wire. In any time interval, the
number of electrons entering the closed surface S is equal to the number of electrons leaving it. On closing the switch, the flux of the electric field through the closed surface

A. is increased
B. is decreased
C. remains unchanged
D. remains zero.

Answer: C::D

D Watch Video Solution

8. Figure shown a closed surfce which intersects a conducting sphere. If a positive charge is placed at the point P, the flux of the

A. will remain zero
B. will become positive
C. will become negative
D. will become undefined.

Answer: B

Exercises

1. The electric field in a region is given by
$\vec{E}=\frac{3}{5} E_{0} \vec{i}+\frac{4}{5} E_{0} \vec{j}$
$E_{0}=2.0 \times 10^{3} N C^{-1}$. Find the flux of this
field through a recatngular surface of area
$0.2 m^{2}$ parallel to the y-z plane.

D Watch Video Solution
2. A charge Q is uniformly distributed over a rod of length ι. Condider a hypothetical cube of edge ι with the centre of the cube at one end of the rod. Find the minimum possible flux of the electric field through the entire surface of the cube.

- Watch Video Solution

3. Show that there can be no net charge in a region in which the electric field is uniform at
all points.

- Watch Video Solution

4. The electric field in a region is given by $\vec{E}=E_{0} \frac{x}{\iota} \vec{i}$. Find the charge contained inside a cubical volume bounded by the curfaced

$$
\begin{aligned}
& x=0, x=\alpha, y=0, y=\alpha, z=0 \text { and } z=\alpha \\
& \text { Take } \quad E_{0}=5 \times 10^{3} N C^{-1} \\
& \iota=2 \mathrm{~cm} \text { and } \alpha=1 \mathrm{~cm} .
\end{aligned}
$$

5. A charge Q is placed at the centre of a cube.

Find the flux of the electric field through the six surfaced of the cube.

D Watch Video Solution

6. A charge Q is placed at a distance $\frac{a}{2}$ above
the centre of a horizontal, spuare surface of edge a as shown in figure (30-E1). Find the flux of the electric field through the square

surface.

a

D Watch Video Solution

7. Find the fluz f the electric field through a spherical surface of radius R due to a charge of $10^{-7} C$ at the centre and another equal
charge at a point $2 R$ away from the centre
(figure).

- Watch Video Solution

8. A charge Q is placed at the centre of an inaginary hemispherical surface. Using
symmetry arguments and the Gauss's law, find
the flux of the electric field due to this charge
through the surface of the hemisphere (figure).

-Q

Watch Video Solution

9. A spherical volume contains a uniformaly distributed charge of density $2.0 \times 10^{-4} \frac{C}{m^{3}}$.

Find the electric field at a piont inside the volume at a distance 4.0 cm from the centre.

- Watch Video Solution

10. The radius of a gold nucleus $(Z=79)$ is about
$7.0 \cdot 10^{-10} \mathrm{~m}$. Assume that the positive charge
is distributed uniformly throughout the the nuclear volume. Find the strength of the
electric field at (a) the surface of the nucleus
and (b) at the middle point of a radius.

Remembering that gold is a conductor, is it justified to assume that the positive charge is uniformly distributed over the entire volume of the nucleus and does not come to the outer surface?

D Watch Video Solution

11. A Charge Q is distributed uniformly within
the material of a hollow sphere of inner and
outer radii r_{1} and r_{2} (figure $30-\mathrm{E} 4$). Find the electric field at a point P at a distance x away
from the centre for $r_{1}<x<r_{2}$. Draw a rough graph showing the electric field as a function of x for $0<x<2 r_{2}$.

12. A charge Q is placed at the centre of an uncharged, hollow metallic sphere of radius
alpha. (a) Find the surface charge density on
the inner surface and on the outer surface. (b)

If a charge q is put on the sphere, what would be the surface charge densities on the inner and the outer surface?
13. Consider the following very rough model of
a beryllium atom. The nucleus has four
protons and four neutrons confined to a small
volume of radius $10^{-15} \mathrm{~m}$. The two 1 s
electrons make a spherical charge cloud at an
average distance of $1.3 \times 10^{-11} \mathrm{~m}$ from the
nucleus, whereas the two 2s electrons make
another spherical cloud at an average distance
of $5.2 \times 10^{-11} \mathrm{~m}$ from the nucleus. Find the
electric field at (a) a point just inside the 1 s
cloud and (b) a point just inside the 2 s cloud.

View Text Solution

14. Find the magnitude of the electric field at a point 4 cm away from a line charge of density $2 \times 10^{-6} C m^{-1}$.

- Watch Video Solution

15. A long cylindrical wire carries a positive charge of linear density $2.0 \times 10^{\wedge}(-8) C \mathrm{~m}^{\wedge}(-1)$.

An electron revolves around it in a circular path under the influence of the attractive
electrostatic force. Find the kinetic energy of
the electron. Note that it is independent of the radius.

D Watch Video Solution

16. A long cylindrical volume contains a uniformly distributed charge of density ρ. Find
the electric field at a point P inside the cylindrical volume at a distance x from its axis
(figure 30-E5),

(D) Watch Video Solution
17. A nonconducting sheet of large surface area and thickness d contains uniform charge distribution of density ρ. Find the electric field at a point P inside the plate, at a distance x from the central plane.

D Watch Video Solution

18. A charged partical having a charge of
$-2.0 \times 10^{-6} C$ is placed close to a nonconducting plate having a surface charge density ` $4.0 \mathrm{xx} 10^{\wedge}(-6) \subset \mathrm{m}^{\wedge}(-2)$. Fine the force
of attraction between the particle and the plate.

D Watch Video Solution

19. One end of a 10 cm long silk thread is fixed to a large vertical surface of a charged non conducting plate and the other end is fastened to a small ball having a mass of 10 g and charge of 4.0×10^{C}. In equilibrium, the thread make an angle of 60° with the vertical.

Find the surface charge density on the plate.
20. One end of a 10 cm long silk thread is fixed to a large vertical surface of a charged nonconducting plate and the other end is fastened to a small ball of mass 10 g and charge of $4 \times 10^{-6} C$. In equilibrium, thread makes an angle of 60° with the vertical.
(a) Find the tension in the string in equilibrium.
(b) Suppose the ball is slightly pushed aside and released. Find the time period of the small
oscillations.
(Use $\sigma=7.5 \times 10^{-7} \frac{C}{m^{2}}$)

D Watch Video Solution

21. Two large conducting plates are placed parallel to each other with a separation of
2.00 cm betweeen them. An electron starting
from rest near one of the plates reaches the other plate in 2.00 microseconds. Find the surface charge density on the inner surfaces.
22. Two large conducting plates are placed parallel to each other nad they carry equal and opposite charges with surface density σ as
shown in figure (30-E6). Find the electric field
(a) at the left of the plates, (b) in between the
plates and © at the right of the plates.

23. Two large conducting plates X and Y. each
having large surface area A (on one side), are placed parallel to each other as shown in figure (30-E7). The plate X is given a charge Q whereas the other is neutral. Find (a) the
surface charge density at the inner surface of the plates X , (b) the electric field at a point to the left of the plates, (c) the electric field at a point in between the plates and (d) the electric field at a point to the right of the
plates.

D Watch Video Solution
24. Three identical metal plates with large surface areas are kept parallel to each as shown in figure (30-E8). The leftmost plate is given a charge Q , the rightmost a chrgear2Q and the middle one remains neutral. Find the charge appearing on the outer surface of the
rightmost plate.

Watch Video Solution

Short Question

1. A small plane area is rotated in an electric
field. In which orientation of the area is the
flux of electric field through the area maximum? In which orientation is it zero.?

D Watch Video Solution

2. A circular ring of radius r made of a nonconducting material is placed with its axis parallel to a uniform electric field. The ring is rotated about a diameter through 180°. Does
the flux of electric field change? If yes, does it decrease of increase?

D Watch Video Solution

3. A charge Q is uniformly distributed on a thin spherical shell. What is the field at the centre of the shell? If a point charge is brought close to the shell, will the field at the centre change?

Does your answer depend on whether the shell is conducting or nonconducting?
4. A spherical shell made of plastic, contains a charge Q distributed uniformly over its surface. What is the electric field inside the shell? If the shell is hammered to deshape it without altering the charge. Will the field inside be changed? What happend if the shell is made of a metal?

D
 Watch Video Solution

5. A point charge q is placed in a cavity in a metal block. If a charge Q is brought outside the metal, will the charge q feel an electric force?

D Watch Video Solution

6. A rubber balloon is given a charge Q distributed uniformly over its surface. Is the
field inside the balloon zero everywhere if the balloon does not have a spherical surface?
7. It is said that any charge given to a conductor comes to its surface. Should all the protons come to the surface? Should all the electrons come to the surface? Should all the free electrons come to the surface?
