©゙’ doubtnut

CHEMISTRY

NCERT - NCERT CHEMISTRY(TELUGU)

CHEMICAL CALCULATION

Solved Problem

1. Calculate the formula weight of each of the following to three significant figures, using a table of atomic weight (AW): (a) chloroform $\mathrm{CHCl}_{3}(\mathrm{~b})$ Iron (III) sulfate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.

- Watch Video Solution

2. What is the mass in grams of a chlorine atom, Cl ?

D Watch Video Solution

3. What is the mass in grams of a hydrogen chloride, HCl ?

- Watch Video Solution

4. $Z n I_{2}$, can be prepared by the direct combination of elements. A chemist determines from the amounts of elements that 0.0654 mol $Z n I_{2}$ can be formed.

- Watch Video Solution

5. How many molecules are there in a 3.46 g sample of hydrogen chloride, HCl ?

Note: The number of molecules in a sample is related to moles of compound ($1 \mathrm{~mol} \mathrm{HCl}=6.023 \times 10^{23} \mathrm{HCl}$ molecules). Therefore if
you first convert grams HCl to moles, then you can convert moles to number of molecules).

- Watch Video Solution

6. A compound has the following composition $\mathrm{Mg}=9.76 \%, \mathrm{~S}=$
$13.01 \%, 0=26.01, \mathrm{H}_{2} \mathrm{O}=51.22$, what is its empirical formula?
$[\mathrm{Mg}=24, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1]$

D Watch Video Solution

7. A compound on analysis gave the following percentage composition $\mathrm{C}=54.54 \%, \mathrm{H}, 9.09 \% \mathrm{O}=36.36$. The vapour density of the compound was found to be 44 . Find out the molecular formula of the compound.
8. A compound on analysis gave the following percentage composition: $\mathrm{Na}=14.31 \% \mathrm{~S}=9.97 \%, \mathrm{H}=6.22 \%, \mathrm{O}=69.5 \%$, calcualte the molecular formula of the compound on the assumption that all the hydrogen in the compound is present in combination with oxygen as water of crystallisation. Molecular mass of the compound is $322[\mathrm{Na}=23, \mathrm{~S}=32, \mathrm{H}=1, \mathrm{O}=16]$.

- Watch Video Solution

9. Identify the oxidising agent, reducing agent, substance oxidised and substance reduced in the following reactions.
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

10. 4.5 g of urea (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$) are dissolved in water and solution is made to 100 ml in a volumetric flask. Calculate the molarity of solution.

- Watch Video Solution

11. Calculate the normality of solution containing 3.15 g of hydrated oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in 250 ml of solution $($ Mol. Mass $=$ 126).

- Watch Video Solution

12. Calculate the molality of an aqueous solution containing 3.0 g of urea (mol.mass=60) in 250 g of water.
13. What volume of 6 M HCl and 2 M HCl should be mixed to get one litre of 3 M HCl ?

- Watch Video Solution

14. How much volume of 10 M HCl should be diluted with water to prepare 2.00 L of 5 M HCl .

D Watch Video Solution

Problem

1. Calculate the oxidation number of underlined elements in the following species.

$$
\underline{\mathrm{C}} \mathrm{O}_{2}, \underline{\mathrm{Cr}_{2}} \mathrm{O}_{7}^{2-}, \underline{\mathrm{Pb}_{3}} \mathrm{O}_{4}, \underline{\mathrm{P}} \mathrm{O}_{4}^{3-}
$$

2. 0.548 g of the metal reacts with dilute acid and liberates 0.0198 g of hydrogen at S.T.P. Calculate the equivalent mass of the metal.

D Watch Video Solution

3. 0.635 g of a metal gives on oxidation 0.795 g g of its oxide.

Calculate the equivalent mass of the metal.

- Watch Video Solution

4. In the determination of molecular mass by Victor - Meyer's

Method 0.790 g of a volatile liquid displaced $1.696 \times 10^{-4} \mathrm{~m}^{3}$ of moist air at 303 K and at $1 \times 10^{5} \mathrm{Nm}^{-2}$ pressure. Aqueous tension at 303 K is $4.242 \times 10^{3} \mathrm{Nm}^{-2}$. Calculate the molecular mass and vapour density of the compound.

Watch Video Solution

Example

1. Calculate the mass of CO_{2} that would be obtained by completely dissolving 10 kg of pure CaCO_{3} in HCl .
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

(D) Watch Video Solution

2. Calculate the mass of oxygen obtained by complete decomposition of 10 kg of pure potassium chlorate (Atomic mass $\mathrm{K}=39, \mathrm{O}=16$ and $\mathrm{Cl}=35.5$)
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
3. Calculate the mass of lime that can be prepared by heating 200 kg of limestone that is 90% pure CaCO_{3}

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

$$
100 \mathrm{~kg} \times 10^{-3} \quad 56 \mathrm{~kg} \times 10^{-3}
$$

D Watch Video Solution

Problems Of Practice

1. Calculate the formula weight of compounds NO_{2}

- Watch Video Solution

2. Calculate the formula weight of compounds glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
3. Calculate the formula weight of compounds NaOH

- Watch Video Solution

4. Calculate the formula weight of compounds $\mathrm{Mg}(\mathrm{OH})_{2}$

(D) Watch Video Solution

5. Calculate the formula weight of compounds methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$

- Watch Video Solution

6. Calculate the formula weight of compounds PCl_{3}
7. Calculate the formula weight of compounds $\mathrm{K}_{2} \mathrm{CO}_{3}$

D Watch Video Solution

8. What is the mass in grams of a calcium atom, Ca ?

- Watch Video Solution

9. What is mass in grams of an ethanol molecule, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?

D Watch Video Solution

10. Calcualte the mass (in grams) of each of the following species.
a. Na atom b. S atom c. $\mathrm{CH}_{3} \mathrm{Cl}$ molecule d. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ formula unit
11. $\mathrm{H}_{2} \mathrm{O}_{2}$ is a colourless liquid. A concentrated solution of it is used as a source of oxygen for Rocket propellant fuels. Dilute aqueous solutions are used as a bleach. Analysis of a solution shows that it contains $0.909 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}$ in 1.00 L of solution. What is the mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ in this volume of solution?.

D Watch Video Solution

12. Boric acid, $H_{3} B O_{3}$ is a mild antiseptic and is often used as an eye wash. A sample contains $0.543 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}$. What is the mass of boric acid in the sample?.

- Watch Video Solution

13. $C S_{2}$ is a colourless, highly inflammable liquid used in the manufacture of rayon and cellophane. A sample contains 0.0205
$\mathrm{mol} C S_{2}$. Calculate the mass of $C S_{2}$ in the sample.

- Watch Video Solution

14. Nitric acid, HNO_{3} is a colourless, corrosive liquid used in the manufacture of Nitrogen fertilizers and explosives. In an experiment to develop new explosives for mining operations, a 28.5 g sample of HNO_{3} was poured into a beaker. How many moles of HNO_{3} are there in this sample of HNO_{3} ?

- Watch Video Solution

15. Obtain the moles of substances in the following.
a. 3.43 g of C b. $7.05 \mathrm{~g} \mathrm{Br} r_{2}$
c. $76 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}$ d. $35.4 \mathrm{~g} \mathrm{Li}_{2} \mathrm{CO}_{3}$
e. 2.57 g As f. 7.83 g P_{4}
$41.4 g N_{2} H_{4}$ h. 153 g $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$
16. How many molecules are there in 56 mg HCN ?

- Watch Video Solution

17. Calculate the following

Number of molecules in $43 \mathrm{~g} \mathrm{NH}_{3}$

- Watch Video Solution

18. Calculate the following

Number of atoms in $32.0 \mathrm{~g} \mathrm{Br} r_{2}$

- Watch Video Solution

19. Calculate the following

Number of atoms in 7.46 g Li

- Watch Video Solution

20. A substance on analysis, gave the following percentage composition, $\mathrm{Na}=43.4 \%, \mathrm{C}=11.3 \%, \mathrm{O}=43.3 \%$ calculate its empirical formula $[\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16]$.

- Watch Video Solution

21. What is the simplest formula of the compound which has the following percentage composition: Carbon 80\%, hydrogen 20\%.

- Watch Video Solution

22. A compound on analysis gave the following percentage composition: $\mathrm{C}-54.54 \%, \mathrm{H}=9.09 \%, \mathrm{O}=36.36 \%$

- Watch Video Solution

23. An organic compound was found to have contained carbon = 40.65%, hydrogen $=8.55 \%$ and Nitrogen $=23.7 \%$. Its vapour density was found to be 29.5. What is the molecular formula of the compound?

- Watch Video Solution

24. A compound contains 32% carbon, 4% hydrogen and rest oxygen. Its vapour density is 75 . Calculate the empirical and molecular formula.
25. An acid of molecular mass 104 contains 34.6% carbon, 3.85% hydrogen and the rest is oxygen. Calcualte the molecualr formula of the acid.

- Watch Video Solution

26. What is the simplest formula of the compound which has the following percentage composition: carbon 80%, Hydrogen 20%, If the molecular mass is 30 , calcualte its molecular formula.

- Watch Video Solution

27. Calculate the oxidation number of underlined elements in the following species.
$\underline{\mathrm{MnSO}_{4}}$

- Watch Video Solution

28. Calculate the oxidation number of underlined elements in the following species.
$\underline{S_{2}} \mathrm{O}_{3}$

- Watch Video Solution

29. Calculate the oxidation number of underlined elements in the following species.
$\mathrm{H} \underline{\mathrm{NO}_{3}}$

- Watch Video Solution

30. Calculate the oxidation number of underlined elements in the following species.
$\mathrm{K}_{2} \underline{\mathrm{Mn} \mathrm{O}_{4}}$

- Watch Video Solution

31. Calculate the oxidation number of underlined elements in the following species.
${ }^{\mathrm{N}} \mathrm{H}_{4}^{+}$

- Watch Video Solution

32. Balance the equations $\mathrm{Mg}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{Mg}^{2+}+\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$)
(in acidic medium)

- Watch Video Solution

33. Balance the equations $\mathrm{Cr}^{3+}+\mathrm{Na}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CrO}_{4}^{-}+\mathrm{Na}^{+}$
34. Balance the equations $\mathrm{S}^{2-}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{S}$

- Watch Video Solution

35. Balance the equations $\mathrm{Fe} \mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$ (molecular form)

- Watch Video Solution

36. In the reaction : $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ chlorine is :
37. Calculate the volume of 14.3 m NH 3 , solution needed to prepare 1L of 0.1M solution.

- View Text Solution

38. How would you make up 425 mL of $0.150 \mathrm{M} \mathrm{HNO}_{3}$ from 68.0% HNO_{3} ? The density of $68.0 \% \mathrm{HNO}_{3}$ is $1.41 \mathrm{~g} / \mathrm{mL}$.

- Watch Video Solution

39. Calculate the molarity of a solution obtained by mixing 100 mL of $0.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 200 mL of $1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

- View Text Solution

40. Calculate the molality of a solution by dissolving 0.850 g of ammonia $\left(\mathrm{NH}_{3}\right)$ in 100 g of water.

- Watch Video Solution

41. NiSO_{4} reacts with $\mathrm{Na}_{3} \mathrm{PO}_{4}$ to give a yellow green precipitate of $\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and a solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
$3 \mathrm{NiSO}_{4}(a q)+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \rightarrow \mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)$ How many mL of 0.375 M NiSO 4 will react with 45.7 mL of 0.265 M $\mathrm{Na}_{3} \mathrm{PO}_{4}$?

- Watch Video Solution

42. What volume of 0.250 M HNO 3 reacts with 42.4 mL of 0.150 M
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the following reaction ?
$2 \mathrm{HNO}_{3(a q)}+\mathrm{Na}_{2} \mathrm{CO}_{3(a q)} \rightarrow 2 \mathrm{NaNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)}+\mathrm{CO}_{2(a q)}$

(. Watch Video Solution

43. A flask contains 53.1 mL of $0.0150 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution. How many mL of $0.350 \mathrm{M} \mathrm{Na} \mathrm{NO}_{2} \mathrm{CO}_{3}$ are required to react completely with $\mathrm{Ca}(\mathrm{OH})_{2}$ in the following reaction .
$\mathrm{Na}_{2} \mathrm{CO}_{3(a q)}+\mathrm{Ca}(\mathrm{OH})_{2(a q)} \rightarrow \mathrm{CaCO}_{3(a q)}+2 \mathrm{NaOH}_{(a q)}$

- Watch Video Solution

Question Choose The Best Answer

1. The volume occupied by 16 g of oxygen at S.T.P.
A. 22.4 L
B. 44.8 L
C. 11.2 L
D. 5.6 L

Answer:

- Watch Video Solution

2. Avogadaro's number represents the number of atoms in
A. 12 g of C^{12}
B. 320 g of S
C. 32 g of Oxygen
D. 12.7 g of iodine.

Answer:

3. The value of gram molecular volume of ozone at S.T.P is
A. 22.4 L
B. 2.24 L
C. 11.2 L
D. 67.2 L

Answer:

- Watch Video Solution

4. The number of atoms present in 0.5 gram- atoms of Nitrogen is
same as the atoms in
A. 12 g of C
B. 32 g of S
C. 8 g of the oxygen
D. 24 g of magnesium

Answer:

- Watch Video Solution

5. The number of gram-atoms of oxygen in 128 g of oxygen is
A. 4
B. 8
C. 128
D. $8 \times 6.02 \times 10^{23}$

Answer:

6. The total number of moles present in 111 g of CaCl_{2} is
A. One mole
B. Two moles
C. Three moles
D. Four moles

Answer:

- Watch Video Solution

7. Which of the following weighs the most?
A. One gram-atom of nitrogen
B. One mole of water
C. One mole of Sodium
D. One molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer:

- Watch Video Solution

8. Which of the following contains same number of carbon atoms as are in 6.0 g of carbon (C-12)?
A. 6.0 g ethane
B. 8.0 g methane
C. 21.0g Propane
D. 28.0 g CO

Answer:

9. Which of the following contains maximum number of atoms?
A. 2.0 g hydrogen
B. 2.0 g oxygen
C. 2.0 g nitrogen
D. 2.0 g methane

Answer:

D Watch Video Solution

10. Which one among the following is the standard for atomic mass?
A. H
B. ${ }^{12} C_{6}$
C. ${ }^{14} C_{6}$
D. ${ }^{16} O_{8}$

Answer:

- Watch Video Solution

11. Which of the following pair of species have same number of atoms under similar conditions ?
A. 1L of each of SO_{2} and CO_{2}
B. 2L each of O_{3} and O_{2}
C. 1L each of NH_{3} and Cl_{2}
D. 1L each of NH_{3} and 2 L of SO_{2}

Answer:

12. 2.0 g of oxygen contain number of atoms same as in

A. 4 g of S
B. 7 g of nitrogen
C. 0.5 g of H_{2}
D. 12.3 g of Na

Answer:

D Watch Video Solution

13. The number of gm-molecules of oxygen in 6.02×10^{24} CO molecules is
A. 1 gm-molecule
B. 0.5 gm-molecule
C. 5 gm-molecule
D. 10 gm-molecule

Answer:

- Watch Video Solution

14. Hydrogen phosphate of certain metal has a formula MHPO_{4}, the formula of metal chloride is
A. MCl
B. $M C l_{3}$
C. $M C l_{2}$
D. $M C l_{4}$

Answer:

15. A compound contains 50% of X (atomic mass 10) and $50 \% Y$ (at. mass 20). Which formula is certain to above data?
A. $X Y$
B. $X_{2} Y$
C. $X_{4} Y_{3}$
D. $\left(X_{2}\right)_{3} Y_{3}$

Answer:

D Watch Video Solution

16. Which of the following compound has / have percentage of carbon same as that in ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$?
A. propene
B. Cyclohexane
C. Ethyne
D. Benzene

Answer:

D Watch Video Solution

17. 5 L of 0.1 M solution of sodium Carbonate contains
A. 53 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. 106 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. 10.6 of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. 5×10^{2} millimoles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer:

D Watch Video Solution

Question Fill In The Blanks

1. One mole of a triatomic gas contains \qquad atoms.

- Watch Video Solution

2. One mole of Sulphuric acid contains Oxygen atoms.

- Watch Video Solution

3. 11.2 L of carbon dioxide at S.T.P contains oxygen atoms.
4. Equal volumes of different gases under similar conditions of temperature and pressure contain equal number of \qquad

D Watch Video Solution

5. A decimolar solution of NaOH contains \qquad of NaOH per litre of the solution.

D Watch Video Solution

6.7 g of CO contains \qquad O atoms.

- Watch Video Solution

7. The mass of 1×10^{22} formula units of $\mathrm{CuSO} \mathrm{O}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is

Question Match The Following

1. Match the following

Column A

1. CaC_{2}
2. Law of multiple proportions
3. Hydrargyrum
4. 2 gm -equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
5.22 .4 L at S.T.P
5. Number of gmmolecules per litre of solution
$7.1 \mathrm{gm} \cdot \mathrm{atom}$ of rhombic sulphur
6. Centimolar solution
7. Mohr's Salt

Column B

a. $\quad 106 \mathrm{~g}$
b. $\quad 6.02 \times 10^{23} \mathrm{Ne}$ atoms
c. Molarity of solution
d. 0.01 moles of solute in one L of solution
e. Liquid element
f. Calcium carbide
g. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{Fe}\left(\mathrm{SO}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$
h. $\quad 18 \mathrm{gm}-$ molecules
i. John Dalton

- Watch Video Solution

1. Can two different compounds have same molecular formula ?

Illustrate your answer with two examples.

- Watch Video Solution

2. What are the essentials of a chemical equation ?

- Watch Video Solution

3. What are the informations conveyed by a chemical equation ?

D Watch Video Solution

4. Balance the following equations

$$
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}
$$

5. Balance the following equations

$$
\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
$$

- Watch Video Solution

6. Balance the following equations

$$
\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

- Watch Video Solution

7. Balance the following equations
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

- Watch Video Solution

