© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(TELUGU)

EQUILIBRIUM

Example

1. The following concentrations were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at 500 K . $\left[N_{2}\right]=1.5 \times 10^{-2} M . \quad\left[H_{2}\right]=3.0 \times 10^{-2} \mathrm{M} \quad$ and $\left[\mathrm{NH}_{3}\right]=1.2 \times 10^{-2} M$. Calculate equilibrium constant.

- Watch Video Solution

2. At equilibrium , the concentrations of $N_{2}=3.0 \times 10^{-3} M$, $O_{2}=4.2 \times 10^{-3} M$ and $N O=2.8 \times 10^{-3} M$ in a sealed vessel at $800 K$. What will be K_{c} for the reaction

$$
N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)
$$

D Watch Video Solution

3. $P C l_{5}, P C l_{3}$ and $C l_{2}$ are at equilibrium at 500 K and having concentration $1.59 \mathrm{M} \mathrm{PCl}_{3}, 1.59 \mathrm{MCl}_{2}$ and $1.41 \mathrm{MPCl}_{5}$. Calcualte K_{c} for the reaction
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$

D Watch Video Solution

4. The value of $K_{c}=4.24$ at $800 K$ for the reaction, $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$

Calcualte equilibrium concentrations of $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ at 800 K , if only CO and $\mathrm{H}_{2} \mathrm{O}$ are present initially at concentrations of $0.1 M$ each.

- Watch Video Solution

5. For the equilibrium , $2 N O C l(g) \Leftrightarrow 2 N O(g)+C l_{2}(g)$ the value of the equilibrium constant, K_{c} is 3.75×10^{-6} at $1069 K$. Calculate the K_{p} for the reaction at this temperature ?

- Watch Video Solution

6. The value of K_{p} for the reaction, $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g)$ is 3.0 at 1000 K . If initially $P_{\mathrm{CO}_{2}}=0.48$ bar and $P_{\mathrm{CO}}=0 \mathrm{bar}$ and pure graphite is present, calculate the equilibrium partial pressures of CO and CO_{2}.
7. The value of K_{c} for the reaction $2 A \Leftrightarrow B+C$ is 2×10^{-3}. At a given time, the composition of reaction mixture is $[A]=[B]=[C]=3 \times 10^{-4} M$. In which direction the reaction will proceed?

- Watch Video Solution

8. 13.8 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ was placed in a $1 L$ reaction vessel at 400 K and allowed to attain equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
The total pressure at equilibrium was found to be 9.15 bar.
Calcualate K_{c}, K_{p} and partial pressure at equilibrium.
9. 3.00 mol of $P C l_{5}$ kept in $1 L$ closed reaction vessel was allowed to attain equilibrium at 380 K . Calculate composition of the mixture at equlibrium $K_{c}=1.80$

- Watch Video Solution

10. The value of ΔG^{\oplus} for the phosphorylation of glucose in glucloysis is $13.8 \mathrm{~kJ} / \mathrm{mol}$. Find the value of K_{c} of 298 K

- Watch Video Solution

11. Hydrolysis of sucrose gives, Sucrose $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ Glucose +

Fructose

Equlibrium constant K_{c} for the reaction is 2×10^{13} at $300 K$.
Calculate ΔG^{\oplus} at $300 K$.
12. What will be the conjugate bases of the following Bronsted acids: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3}^{-}?

- Watch Video Solution

13. Write the conjugate acids for the following Bronsted bases: $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCOO^{-}:

- Watch Video Solution

14. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and conjugate base.

- Watch Video Solution

15. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.
a. OH^{-}
b. F^{-}
c. H^{+}
d. $B C l_{3}$

(Watch Video Solution

16. The concentration of hydrogen ion in a sample of soft drink is
$3.8 \times 10^{-3} M$. What is its $p H$?

- Watch Video Solution

17. Calculate pH of a $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl .

- Watch Video Solution

18. The ionization constant of $H F$ is 3.2×10^{-4}. Calculate the degree of dissociation of $H F$ in its $0.02 M$ solution. Calculate the concentration of all species present $\left(\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{F}^{-}\right.$and HF$)$ in the solution and its $p H$.

- Watch Video Solution

19. The $p H$ of $0.1 M$ monobasic acid is 4.50 . Calculate the concentration of species H^{+}.
A^{-}and $H A$ at equilibrium. Also, determine the value of K_{a} and $p K_{a}$ of the monobasic acid.

- Watch Video Solution

20. Calculate the $p H$ of $0.08 M$ solution of hypochlorous acid, HOCl . The ionization constant of the acid is 2.5×10^{-5}. Determine the percent dissociation of HOCl .

- Watch Video Solution

21. The $p H$ of $0.004 M$ hydrazine solution is 9.7 . Calculate its ionization constant K_{b} and $p K_{b}$.

- Watch Video Solution

22. Calculate the pH of the solution in which $0.2 \mathrm{MNH} \mathrm{H}_{4} \mathrm{Cl}$ and
$0.1 \mathrm{MNH}_{3}$ are present. The $p K_{b}$ of ammonia solution is 4.75 .

D Watch Video Solution

23. Determine the degree of ionization and $p H$ of $0.05 M$ of ammonia solution. The ionization constant of ammonia can be taken from Table 7.7. Also, calculate the ionization constant of the conjugate acid of ammonia.

- Watch Video Solution

24. Calculate the $p H$ of $0.10 M$ ammonia solution. Calcualte the $p H$ after $50.0 m L$ of this solution is treated with $25.0 m L$ of 0.10 MHCl . The dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$.

- Watch Video Solution

25. The $p K_{a}$ of acetic acid and $p K_{b}$ of ammonium hydroxide are
4.76 and 4.75 respectively. Calculate the $p H$ of ammonium acetate solution.

- Watch Video Solution

26. Calculate the solubility of $A_{2} X_{2}$ in pure water, assuming that neither kind of ion reacts with water. The solubility product of $A_{2} X_{3}, K_{s p}=1.1 \times 10^{-23}$.

- Watch Video Solution

27. The values of $K_{s p}$ of two sparingly soluble salts $\mathrm{Ni}(\mathrm{OH})_{2}$ and $A g C N$ are 2.0×10^{-15} and 6×10^{-17} respectively. Which salt is more soluble ? Explain .

- Watch Video Solution

28. Calculate the molar solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.10 MNaOH .

The ionic product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is 2.0×10^{-15}

1. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.

- Watch Video Solution

2. What is the initial effect of the change on vapour pressure ?

- Watch Video Solution

3. How do rates of evaporation and condensation change on vapour pressure?

- Watch Video Solution

4. What happens when equilibrium is restored finally and what will be the final vapour pressure?

(Watch Video Solution

5. State law of chemical equilibrium? What is K_{c} for the following equilibrium when the equilibrium concentration of each substance is $\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}$ $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$

- Watch Video Solution

6. At a certain temperature and total pressure of $10^{5} \mathrm{~Pa}$, iodine
vapour contains 40% by volume of I atoms
$I_{2}(g) \Leftrightarrow 2 I(g)$
Calculate K_{p} for the equilibrium

Watch Video Solution

7. Write expression for the equilibrium constant, K_{c}, for each of the following reactions:
(i) $2 \mathrm{NOCl}_{(g)} \leftrightarrow 2 N O_{(g)}+C l_{2(g)}$
(ii) $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(s)} \Leftrightarrow 2 \mathrm{CuO} \mathrm{O}_{(\mathrm{s})}+4 \mathrm{NO}_{2(g)}+\mathrm{O}_{2(g)}$
(iii)
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(a g)}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)}$
(iv) $\mathrm{Fe}_{(a q)}^{+3}+3 \mathrm{OH}_{(a q)}^{-} \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3(S)^{+}}$

D Watch Video Solution

8. Find out the value of K_{c} for each of the following equilibria from the value of K_{p} :
$(i) 2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g), K_{p}=1.8 \times 10^{-2}$ at 500 K
$(i i) \mathrm{CaCO}_{3}(S) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{p}=167$ at 1073 K

- Watch Video Solution

9. For the following equilibrium, $K_{c}=6.3 \times 10^{14}$ at $1000 K$
$N O(g)+O_{3}(g) \Leftrightarrow \mathrm{NO}_{2}(g)+O_{2}(g)$
Both the forward and reverse reaction in the equilibrium are elementary bimolecular reactions. What is K_{c}, for the reverse reaction?

D Watch Video Solution

10. Explain why pure liquids and solids can ignored while writing the equilibrium constant expression?

- Watch Video Solution

11. Reaction between N_{2} and O_{2-} takes place as follows:
$2 N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N_{2} O(g)$
If a mixture of $0.482 \mathrm{~mol} N_{2}$ and 0.933 mol of O_{2} is placed in a
$10 L$ reaction vessel and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$. determine the composition of equlibrium mixture.

- Watch Video Solution

12. Nitric oxide reacts with Br_{2} and gives nitrosyle bromide as per reaction given below :
$2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \Leftrightarrow 2 \mathrm{NOBr}(g)$
When 0.087 mol of NO and 0.0437 mol of $B r_{2}$ are mixed in a closed container at constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of NO and Br_{2}.
13. At $450 K, K_{p}=2.0 \times 10^{10} / \mathrm{bar}$ for the given reaction at equilibrium.
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
What is K_{c} at this temperature ?

- Watch Video Solution

14. A sample of $H I(g)$ is placed in flask at a pressure of 0.2 atm. At equilibrium the partial pressure of $H I(g)$ is 0.04 atm . What is K_{p} for the given equilibrium?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

- Watch Video Solution

15. A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of
NH_{3} is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant, K_{c} for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is 1.7×10^{2}. Is the reaction mixture at equilibrium ? If not, what is the direction of the net reaction?

- Watch Video Solution

16. The equilibrium constant expression for a gas reaction is
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
Write the balanced chemical equation corresponding to this expression.

- Watch Video Solution

17. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in 10 L vessel and heated to 725 K . At equlibrium 40% of water (by mass) reacts with $C O$ according to the equation.

$$
\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)
$$

Calculate the equilibrium constant for the reaction.

- Watch Video Solution

18. At 700 K equilibrium constant for the reaction :
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is 54.8. If $0.5 \mathrm{~mol}^{-1}$ of $H I(g)$ is present at equilibrium at 700 K . What are the concentration of $H_{2}(g)$ and $I_{2}(g)$ assuming that we initially started with $H I(g)$ and allowed it to reach equilibrium at 700 K ?

- Watch Video Solution

19. What is the equilibrium concentration of each of the substances in the equilirbrium when the initial concentration of $I C l$ was $0.78 M$?
$2 I C l(g) \leftrightarrow I_{2}(g)+C l_{2}(g), K_{c}=0.14$

D Watch Video Solution

20. $K_{p}=0.04$ atm at $899 K$ for the equilibrium shown below.

What is the equilibrium concentration of $C_{2} H_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium
?
$C_{6} H_{6}(g) \Leftrightarrow C_{2} H_{4}(g)+H_{2}(g)$

- Watch Video Solution

21. Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as :
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(i) Write the concentration ratio (reaction quotient). Q_{c}, for this reaction (note : water is not in excess and is not a solvent in this reaction)
(ii) At 293 K , if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at $293 K, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime. Has equilibrium been reached ?

- Watch Video Solution

22. How much $P C l_{5}$ must be added to a one little vessel at $250^{\circ} \mathrm{C}$ in order to obtain a concentration of 0.1 mole of $C l_{2}$ at equilibrium. K_{c} for $P C l(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ is $0.0414 M$

- Watch Video Solution

23. One of the reaction that takes place in producing steel from iron ore is the reduction of iron (II) oxide by carbon monoxide to give iron metal and CO_{2}.
$\mathrm{FeO}(s)+\mathrm{CO}(g) \Leftrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g), \quad K_{p}=0.265 \quad$ atm at $1050 K$

What are the equilibrium partial pressures of CO and CO_{2} at $1050 K$ if the initial partial pressures are : $P_{C O}=1.4$ atm and $=0.8 \mathrm{~atm}$?

- Watch Video Solution

24. Equilibrium constant, K_{c} for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ at $500 K$ is 0.061
At particular time, the analysis shows that composition of the reaction mixture is $3.0 \mathrm{~mol} L^{-1} N_{2}, 2.0 \mathrm{~mol} L^{-1} H_{2}$ and 0.5 mol
$L^{-1} \mathrm{NH}_{3}$. Is the reaction at equilibrium ? If not in which direction does the reaction tend to proceed to reach equilibrium ?

- Watch Video Solution

25. Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium :
$2 B r C l(g) \Leftrightarrow B r_{2}(g)+C l_{2}(g)$
for which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of $3.3 \times 10^{-3} \mathrm{molL}^{-1}$, what is its molar concentration in the mixture at equilibrium?
26. At $1127 K$ and 1 atm pressure, a gaseous mixture of $C O$ and CO_{2} in equilibrium with soild carbon has $90.55 \% \mathrm{CO}$ by mass

$$
C(s)+C O_{2}(g) \Leftrightarrow 2 C O(g)
$$

Calculate K_{c} for this reaction at the above temperature.

- Watch Video Solution

27. Calculate a) ΔG° and b) the equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K
$\mathrm{NO}(g)+1 / 2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{NO}_{2}(g)$
where
$\Delta_{f} G^{\oplus}\left(N O_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{f} G^{\oplus}(\mathrm{NO})=87.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{f} G^{\oplus}\left(O_{2}\right)=0 \mathrm{~kJ} / \mathrm{mol}$
28. Does the number of moles of reaction produces increase, decrease or remain same when each of the following equilibriumis subjected to a decrease in pressure by increasing the volume ?
$(a) P C l_{5}(g) \Leftrightarrow P l_{5}(g)+C l_{2}(g)$
$(b) \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$
$(c) 3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(g)$

- Watch Video Solution

29. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
$(i) \mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
$(i i) C H_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
$(i i i) \mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
$(i v) 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
$(v) \mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
$(v i) 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

- Watch Video Solution

30. The equilibrium constant for the following reaction is 1.6×10^{5} at $1024 k$
$H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$
Find the equilibrium pressure of all gases if 10.0 bar of HBr is introdued into a sealed container at $1024 K$.

- Watch Video Solution

31. Dihydrogen gas is obtained from natural gas by partial oxidation with stream as per the following endothermic reaction.
$\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)$
a. Write an expression for K_{p} for the above reaction.
b. How will the values o K_{p} and composition of equilibrium mixture be affected by
(i) increasxing the pressure (ii) increasing the temperature (iii) using a catalyst?

- Watch Video Solution

32. Describe the effect of:
a. addition of H_{2}
b. addition of $\mathrm{CH}_{3} \mathrm{OH}$
c. removal of CO
d. removal of $\mathrm{CH}_{3} \mathrm{OH}$ on the equilibrium of the reaction.
$2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
33. At 473 K , equilibrium constant K_{C} for the decompositioni of phosphorus pentachloride, $P C l_{5}$ is 8.3×10^{-3}. If the decomposition is depicted as:
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) \Delta H=124.0 \mathrm{kJmol}^{-1}$
a. Write an expression of K_{c} for the reaction.
b. What is the value of K_{c} for the reverse reaction at the same temperature?
c. What would be effect on K_{c} if
(i) more PCl_{5} is added (ii) pressure is increased (iii) the temperature in increased.

- Watch Video Solution

34. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam.

The first stage of two stage reaction involves the formation of

CO and H_{2}. In second stage , CO formed in first stage is reacted with more steam in water gas shift reaction.
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$
If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixtureof $C O$ and steam such that $p_{C O}=p_{H_{2} P=4.0}$ bar, what will be the partial pressure of H_{2} at equilibrium ? $K_{p}=10.1$ at $400^{\circ} \mathrm{C}$

- Watch Video Solution

35. Predict which of the following reaction will have appreciable concentration of reactants and products :
$(a) C l_{2}(g) \Leftrightarrow 2 C l(g) K_{c}=5 \times 10^{-39}$
$(b) \mathrm{Cl}_{2}(g)+2 \mathrm{NO}(g) \Leftrightarrow 2 \mathrm{NOCl}(g) K_{c}=3.7 \times 10^{8}$
$(c) \mathrm{Cl}_{2}(g)+2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) \mathrm{K}_{c}=1.8$
36. The value of K_{c} for the reaction $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$ is
2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of O_{2} in air at $25^{\circ} C$ is 1.6×10^{-2}, what is the concentration of O_{3} ?

- Watch Video Solution

37. The reaction , $\mathrm{CO}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{4}(g)+\mathrm{H}_{2}(g)$ is at equilibrium at 1300 K in a $1 L$ flask. It also contain 0.30 mol of $C O$,
0.10 mol of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of
CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture. The equilibrium constant. K_{c} for the reaction at the given temperature is 3.90 .

- Watch Video Solution

38. What is meant by the conjugate acid-base pair ? Find the conjugate acid/base for the following species :
$\mathrm{HNO}_{2}, \mathrm{CN}^{-}, \mathrm{HCIO}_{4}, \mathrm{~F}^{-}, \mathrm{OH}^{-}, \mathrm{CO}_{3}^{2-}$, and S^{2-}.

D Watch Video Solution

39. Which of the followings are Lewis acids? $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{+}$, and NH_{4}^{+}

- Watch Video Solution

40. What will be the conjugate bases of the following Bronsted acids: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3}^{-}?

- Watch Video Solution

41. Write the conjugate acids for the following Bronsted bases:
$\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and HCOO^{-}:

- Watch Video Solution

42. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and conjugate base.

- Watch Video Solution

43. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.
a. OH
b. F^{-}
c. H^{+}d. $B C l_{3}$
44. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} M$. What is its $p H$?

- Watch Video Solution

45. The $p H$ of a sample of vinegar is 3.76 . Calculate the concentration of hydrogen ion in it.

- Watch Video Solution

46. The ionization constants of $H F, H C O O H$ and HCN at 298 K are $6.8 x 10^{-4}, 1.8 \times 10^{-4}$ and 4.7×10^{-9} respectively. Calculate the ionization constants of the corresponding conjugate base.

- Watch Video Solution

47. The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in $0.05 M$ solution of phenol? What will be its degree of ionization if the solution is also $0.01 M$ in sodium phenolate?

- Watch Video Solution

48. The first ionization constant of $H_{2} S$ is 9.1×10^{-8}. Calculate the concentration of $H S^{-}$ion in its $0.1 M$ solution. How will this concentration be affected if the solution is 0.1 M in HCl also ? If the second dissociation constant of $H_{2} S$ is 1.2×10^{-13} calculate the concentration of S^{2-} under both conditions.

- Watch Video Solution

49. The ionization constant of acetic acid is 1.74×10^{-5}.

Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its $p H$.

- Watch Video Solution

50. It has been found that the $p H$ of a $0.01 M$ soluiton of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.

- Watch Video Solution

51. Assuming complete dissociation, calculate the $p H$ of the following solutions :
(a) 0.003 MHCl
(b) 0.005 MNaOH
(c) $0.002 M H B r$
(d) 0.002 MKOH

- Watch Video Solution

52. Calculate the $p H$ of the following solution :
(a) $2 g$ of TlOH dissolved in water to give 2 litre of solution.
(b) $0.3 g$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
(c) 0.3 g of NaOH dissolved in water to give 200 mL of solution.
(d) 1 mL of 13.6 MHCl is diluted with water to give 1 litre of solution.

D Watch Video Solution

53. The degree of ionization of a $0.1 M$ bromoacetic acid solution
is 0.132 . Calculate the $p H$ of the solution and the $p K_{a}$ of
bromoacetic acid.

- Watch Video Solution

54. The $p H$ of $0.005 M$ codeine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 .

Calculate its ionization constant and $p K_{b}$.

- Watch Video Solution

55. What is the $p H$ of $0.001 M$ aniline solution ? The ionization constant of aniline can be taken from Table 7.7. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

D Watch Video Solution

56. Calcultae the degree of ionization of $0.05 M$ acetic acid if its $p K_{a}$ value is 4.74 . How is the degree of dissociation affected when its solution also contains
(a) $0.01 \mathrm{M}(b) 0.1 M$ in HCl ?

D Watch Video Solution

57. The ionization constant of dimethylamine is 5.4×10^{-4}.

Calculate its degree of ionization in its $0.02 M$ solution. What percentgae of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

- Watch Video Solution

58. Calculate the hydrogen ion concentration in the following biological fluids whose $p H$ are given below :
(a) Human muscle-fluid, 6.83 (b) Human stomach fluid, 1.2
(C) Human blood 7.38 (d) Human saliva 6.4

D Watch Video Solution

59. The $p H$ of milk, black, coffee, tomato juice, lemon juice and egg white are $6.8,5.0,4.2,2.2$ and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

- Watch Video Solution

60. If 0.561 g of KOH is dissolved in water to give 200 mL of solution at 298 K . Calculate the concentrations of potassium, hydrogen and hydroxyl ions. What is its $p H$?

- Watch Video Solution

61. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{~g} / \mathrm{L}$ of solution.

Calculate the concentrations of strontium and hydroxyl ions acid the $p H$ of the solution.

- Watch Video Solution

62. The ionization constant of propanoic acid is 1.32×10^{-5}.

Calculate the degre of ionization of the acid in its $0.05 M$ solution and also its $p H$. What will be its degree of ionization if the solution is 0.01 M in HCl also ?

D Watch Video Solution

63. The $p H$ of $0.1 M$ solution of cyantic acid (HCNO) is 2.34
.Calulate the ionization constant of the acid and its degree of ionization in the solution.
64. The ionization constant of nitrous acid is 4.5×10^{-4}.

Calculate the $p H$ of $0.04 M$ sodium nitrite solution and also its degree of hydrolysis.

- Watch Video Solution

65. A $0.02 M$ solution of pyridinium hydrochloride has $p H=3.44$.

Calculate the inozation constant of pyridine.

- Watch Video Solution

66. Predict if the solutions of the following salts are neutral , acidic or basic : $\mathrm{NaCl}, \mathrm{Kbr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF
67. The ionization constant of chloroacetic acid is 1.65×10^{-3}.

What will be the $p H$ of $0.1 M$ acid and its $0.1 M$ sodium salt solution?

- Watch Video Solution

68. Ionic product of water at $310 K$ is 2.7×10^{-14}. What is the $p H$ of neutral water at this temperature ?

- Watch Video Solution

69. Calculate the $p H$ of the resultant mixture :

10 mL of $0.2 \mathrm{MCa}(\mathrm{OH})_{2}+25 m L$ of 0.1 MHCl
(b) 10 mL of $0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$
(c) 10 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 MKOH

- Watch Video Solution

70. Determine the solubilities of silver chromate barium chromate, ferric hydroxide, lead chloride and mercurous iodide at $298 K$ from their solubility product constants given in Table 7.9. Determine also the molarities of individual ions.

- Watch Video Solution

71. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.

- Watch Video Solution

72. Equal volumes of $0.002 M$ solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate ? (For cupric iodate $K_{s p}=7.4 \times 10^{-8}$).

- Watch Video Solution

73. The ionization constant of benzoic acid is 6.46×10^{-5} and $K_{s p}$ for silver benzoate is 2.5×10^{-13}. How many times is silver benzoate more soluble in a buffer of $p H 3.19$ compared to its solubility in pure water?

- Watch Video Solution

74. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in
equal volumes, there is no precipition of iron sulphide? (For iron sulphide , $K_{s p}=6.3 \times 10^{-18}$).

D Watch Video Solution

75. What is the minimum volume of water required to dissove $1 g$ of calcium sulphate at $298 K$? (For calcium sulphate, $K_{s p}$ is $\left.9.1 \times 10^{-6}\right)$.

- Watch Video Solution

76. The concentration of sulphide ion in 0.1 MHCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} M$. If 10 mL of this is added to $5 m L$ of $0.04 M$ solution of the following : FeSO_{4} , $\mathrm{MnCl}_{2}, \mathrm{ZnCl}_{2}$ and CdCl_{2}.in which of these solutions precipitation will take place?
