# ©゙" doubtnut 

India's Number 1 Education App

## CHEMISTRY

## NCERT - NCERT CHEMISTRY(TELUGU)

## GASEOUS STATE

Problem

1. Calculate the partial pressures $N_{2}$ and $H_{2}$ in
a mixture of two moles of $N_{2}$ and two moles
of $\mathrm{H}_{2}$ at STP.
2. If a gas diffuses at the rate of one-half as fast as $O_{2}$, find the molecular mass of the gas.

## - Watch Video Solution

3.50 ml of gas A effuse through a pin -hole in

146 second. The same volume of $\mathrm{CO}_{2}$ under identical condition effuse in 115 seconds.

Calculate the molecular mass of A.
4. One mole of carbon-dioxide was found to occupy a volume of 1.32 litre at $48^{\circ} \mathrm{C}$ and at a pressure of 16.4 atm . Calculate the pressure of the gas that would have been expected to behave ideally and non-ideally.

## - Watch Video Solution

5. Vanderwaal's constants for hydrogen chloride gas are $\mathrm{a}=3.67 \mathrm{~atm} \mathrm{lit}^{-2}$ and $\mathrm{b}=$
$40.8 \mathrm{ml} \mathrm{mol}^{-1}$. Find the critical temperature and critical pressure of the gas.

## D Watch Video Solution

6. The critical temperature of hydrogen gas is $33.2^{\circ} \mathrm{C}$ and its critical pressure is 12.4 atm.

Find out the values of $a^{\prime}$ and $\mathrm{b}^{\prime}$ for the gas.

## D Watch Video Solution

Self Test

1. Calculate the partial pressures of $\mathrm{O}_{2}$ and $\mathrm{H}_{2}$ in a mixture of 3 moles of $\mathrm{O}_{2}$ and 1 mole of $\mathrm{H}_{2}$ at S.T.P.

## D Watch Video Solution

2. If a gas diffuses at the rate of one quarter as
fast as $N_{2}$. Find the molecular mass.
3. 75 ml of gas A effuses through a pin hole in

73 seconds. The same volume of $\mathrm{SO}_{2}$ under identical conditions effuses in 75 seconds.

Calculate the molecular mass of A .

## - Watch Video Solution

## Questions Choose The Correct Answer

1. The essential conditions for liquefaction of gases were discovered by Andrews in 1869 as a
result of his study of pressure-volume-
temperature relationship for $\mathrm{CO}_{2}$. It was
found that above a certain temperature, it was
impossible to liquefy a gas whatever the pressure was applied. The temperature below which the gas can be liquefied by the application of pressure alone is called critical temperature (Tc). The pressure required to
liquefy a gas at this temperature is called the
critical pressure (Pc). The volume occupied by one mole of the substance at the critical temperature and pressure is called critical volume. Critical constants are related with van
der waals' constant as follows:
$V_{c}=3 b, P_{c}=\frac{a}{27 b^{2}}, T_{c}=\frac{8 a}{27 R b}$
The values of critical volumes of four gases A,

## $B, C$ and $D$ are 0.025L, 0.312L, 0.245 L and 0.432 L

respectively. The gas with larger molecular diameter will be :
A. P and $\frac{1}{V}$
B. PV and V
C. P and V
D. V and $\frac{1}{P}$
2. The critical temperature of a gas is that temperature
A. Above which it can no longer remain in
the gaseous state
B. Above which it can not be liquified by pressure
C. At which it solidifies
D. At which volume of gas becomes zero.

## Answer:

## D Watch Video Solution

3. If a gas expands at constant temperature.
A. Number of molecules of the gas
decreases
B. The kinetic energy of the molecules
decreases
C. The kinetic energy of the molecules
remains constant
D. The kinetic energy of the molecules increases

## Answer:

D Watch Video Solution
4. Two samples of gases 'a' and 'b' are at the same temperature. The molecules of 'a' are
travelling 4 times faster than molecules of 'b'.

The ratio of $M_{a} / M_{b}$ will be
A. $\frac{1}{16}$
B. 4
C. $\frac{1}{4}$
D. 16

## Answer:

D Watch Video Solution

## Questions B Fill In The Blanks

1. The correction term for pressure deviation is
......in the Vanderwaal equation of state.

- Watch Video Solution

2. The relation between inversion temperature
and Vanderwaal's constants $a^{\prime}$ and $\mathrm{b}^{\prime}$ is

- Watch Video Solution


## 3. To liquefy Helium ____ method is exclusively

 usedD Watch Video Solution
4. The adiabatic expansion of a real gas results
in

- Watch Video Solution


## 5. The rate of diffusion of gas is

## square root of both and molecular mass.

## - Watch Video Solution

## Questions C Match The Following

## 1. Match the following

11. Adeal gas behaviour
(a) $\stackrel{\mathbf{B}}{\text { Critical temperature }}$
12. Adiabatic
(b) Liquid oxygen demagnetization
13. $\mathrm{CO}_{2}$ at $31.1^{\circ} \mathrm{C}$
14. Joule Thomson
(c) Mole fraction of the gas
Experiment
(d) Number of moles of the gas
15. Ratio of the partial
(e) Low pressure and high temperature pressure to the total pressure
(f) Liquid Helium

## Watch Video Solution

## Questions D Write In One Or Two Sentence

1. State Boyle's law. Give its mathematical expression.

## D Watch Video Solution

2. Compare the partial pressures of gases $A$ and $B$ when 3 moles of $A$ and 5 moles of $B$
mixed in constant volume, and $25^{\circ} \mathrm{C}$ and 1 atm pressure.

D Watch Video Solution
3. Derive the correction constant for volume of a real gas.

## - Watch Video Solution

4. A sample of an ideal gas escapes into an evacuated container, there is no change in the
kinetic energy of the gas. Why?

## - Watch Video Solution

5. What is the change in temperature when a compressed real gas is allowed to expand adiabatically through a porous plug

## D Watch Video Solution

6. State Boyle’s law and Charles law.
7. What are measurable properties of gases?

## D Watch Video Solution

8. What is the molar volume of nitrogen at 500 K and 600 atm according to ideal gas law?

D Watch Video Solution
9. State Graham's law of diffusion.
10. Give the values of R-gas constant in calories and Joules.

- Watch Video Solution

11. What are the units of Vanderwaals constants $a^{\prime}$ and $\mathrm{b}^{\prime}$ ?

D Watch Video Solution
12. Write the significance of Vanderwaal's constants

- Watch Video Solution

13. Write the limitations of vanderwaal equation of state.
(D) Watch Video Solution
14. Define Joule-Thomson effect

## Watch Video Solution

## 15. What is meant by inversion temperature?

## D Watch Video Solution

## Questions E Explain Briefly On The Following

1. At $27^{\circ} \mathrm{C}, \mathrm{H}_{2}$ is leaked through a tiny hole into a vessel for 20 minutes Another unknown gas at the same T and P as that of $H_{2}$ is leaked through the same hole for 20 minutes. After
effusion of the gas, the mixture exerts a pressure of 6 atm. The $H_{2}$ content of the mixture is 0.7 moles. If volume of the container is 3 litres what is the molecular weight of unknown gas?

## D Watch Video Solution

2. Calculate the pressure exerted by 5 moles of
$\mathrm{CO}_{2}$ in one litre vessel at $47^{\circ} \mathrm{C}$ using

Vanderwal's equation. Also report the pressure of gas if it behaves ideally in nature.

Given that $\mathrm{a}=3.592 \mathrm{~atm} \mathrm{lit}^{2} \mathrm{~mol}^{-2} . \mathrm{b}=0.0427$
lit $\mathrm{mol}^{-1}$

## D Watch Video Solution

3. Calculate the total pressure in a 10 L cylinder which contains 0.4 g of helium, 1.6 g of oxygen and 1.4 g of nitrogen at $27^{\circ} \mathrm{C}$. Also calculate the partial pressures of He gas in the cylinder. Assume Ideal behaviour for gases.
$\mathrm{R}=0.082 \mathrm{~L}$ atm $k^{-1} \mathrm{~mol}^{-1}$
4. The critical constants for water are $374^{\circ} \mathrm{C}$, 218 atm and 0.0566 litre $\mathrm{mol}^{-1}$. Calculate $a^{\prime}$ and $\mathrm{b}^{\prime}$ of water

## - Watch Video Solution

5. Vanderwaal's constant in litre atmosphere per mole for carbon dioxide are $\mathrm{a}=3.6$ and $\mathrm{b}=$
$4.28 \times 10^{-2}$.
Calculate
the
critical
temperature and critical volume of the gas. $\mathrm{R}=$
0.0820 lit atm $K^{-1} . \mathrm{Mol}^{-1}$
6. Explain the causes for deviation for real gases from ideal behaviour.

## - Watch Video Solution

7. Deduce the relationship between critical constants and Vanderwaal's constants.
8. Describe Linde's process of liquefaction of gases with neat diagram.

## - Watch Video Solution

9. Describe Claude's process of liquefaction of gases with neat diagram.

- Watch Video Solution

10. What is meant by adiabatic
demagnetisation? Explain its use in
liquefaction of gases.

- Watch Video Solution

