

MATHS

NCERT - NCERT MATHEMATICS(TELUGU)

PRINCIPLE OF MATHEMATICAL INDUCTION

Example

1. Using the principle of Mathematical Induction , $orall n \in N$, prove that

$$1^2+2^2+3^2+....\,n^2=rac{n(n+1)(2n+1)}{6}$$

Watch Video Solution

2. Prove that $2^n > n$ for all positive integers n.

Watch Video Solution

3. For every positive integer n, prove that $7^n - 3^n$ is divisible by 4.

4. Prove that $(1+x)^n \ge (1+nx)$ for all natural number n where

x > -1

Watch Video Solution

5. Prove the rule of exponents $(ab)^n = a^n b^n$ by using principle of

mathematical induction for every natural number.

1. Use mathematical induction to prove that statement

$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}, \forall n \in N$$

Watch Video Solution
2. Using Mathematical Induction, prove that statement for all $n \in N$
 $1.2.3 + 2, 3, 4 + \ldots + (upto n terms) = \frac{n(n+1)(n+2)(n+3)}{4}$.

Watch Video Solution

3. Prove that by using the principle of mathematical induction for all

Watch Video Solution

ъ т

4.
$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots 16$$
 terms =

Watch Video Solution

5. Using the principle of finite Mathematical Induction prove the following:

(iv)
$$a+ar+ar^2+\ldots\ldots+ ext{n terms}=rac{a(r^n-1)}{r-1}, r
eq 1.$$

Watch Video Solution

6. Using Mathematical Induction, prove that statement for all $n~\in~N$

$$\left(1+rac{3}{1}
ight)\left(1+rac{5}{4}
ight)\left(1+rac{7}{9}
ight).....\left(1+rac{2n+1}{n^2}
ight)=(n+1)^2.$$

Watch Video Solution

7. Prove that by using the principle of mathematical induction for all

$$n\in N$$
:

$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)....\left(1+\frac{1}{n}\right) = (n+1)$$

Watch Video Solution

8. Using the principle of finite Mathematical Induction prove the

following:

(iii)
$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + n \text{ terms} = \frac{n}{3n+1}.$$

Watch Video Solution

9. Prove that by using the principle of mathematical induction for all

$$n\in N$$
:

$$1+2+3+.... + n < rac{1}{8}(2n+1)^2$$

Watch Video Solution

10. Prove that by using the principle of mathematical induction for all

 $n \in N$:

 $10^{2n-1}+1$ is divisible by 11

11. Prove that by using the principle of mathematical induction for all

 $n\in N$:

 $x^{2n}-y^{2n}$ is divisible by x+y

Watch Video Solution

12. Prove that by using the principle of mathematical induction for all

 $n\in N$:

 $3^{2n+2}-8n-9$ is divisible by 8

Watch Video Solution

13. Prove that by using the principle of mathematical induction for all

 $n\in N$:

 $41^n - 14^n$ is multiple of 27

O Watch Video Solution