©゙’doubtnut India's Number 1 Education App

PHYSICS

NCERT - NCERT PHYSICS(TELUGU)

GRAVITATION

Example

1. Let the speed of the planet at the perihelion
pin be vP and the Sun-planet distance $S P$ be
r_{P}. Relate $\left\{r_{P}, v_{P}\right\}$ to the corresponding
quantities at the aphelion $\left\{r_{A}, v_{A}\right\}$. Will the planet take equal times to traverse BAC and CPB ?

D View Text Solution

2. Three equal masses of mg each are fixed at the vertices of an equilateral triangle $A B C$.
(a) What is the force acting on a mass $2 m$ placed at the centroid G of the triangle?
(b) What is the force if the mass at the vertex

A is doubled?

Take AG = BG = CG = 1 m

D View Text Solution
3. Find the potential energy of a system of four particles placed at the vertices of a square of side I. Also obtain the potential at the centre of the square.
4. Two uniform solid spheres of equal radii R, but mass M and $4 M$ have a centre to centre
separation 6 R, as shown. The two spheres are held fixed. A projectile of mass m is projected from the surface of the sphere of mass M directly towards the centre of the second sphere. Obtain an expression for the minimum speed v of the projectile so that it reaches the surface of the second sphere.
5. The planet Mars has two moons, phobos and delmos. (i) phobos has a period 7 hours,

39 minutes and an orbital radius of 9.4×103
km . Calculate the mass of mars. (ii) Assume
that earth and mars move in circular orbits
around the sun, with the martian orbit being
1.52 times the orbital radius of the earth. What is the length of the martian year in days?

D View Text Solution

6. Weighing the Earth : You are given the following data: $\mathrm{g}=9.81 \mathrm{~ms}^{-2}$, $R_{E}=6.37 \times x 10^{6} \mathrm{~m}$, the distance to the moon $\mathrm{R}=3.84 \times x 10^{8} \mathrm{~m}$ and the time period of the moon's revolution is 27.3 days. Obtain the mass of the Earth M_{E} in two different ways.
7. Express the constant k of Eq. (8.38) in days and kilometres. Given $\mathrm{k}=10^{-13} s^{2} \mathrm{~m}^{-3}$. The moon is at a distance of $3.84 x \times 105 \mathrm{~km}$ from the earth. Obtain its time-period of revolution in days.

D View Text Solution

8. A 400 kg satellite is in a circular orbit of radius $2 R_{E}$ about the Earth. How much energy
is required to transfer it to a circular orbit of
radius $4 R_{E}$? What are the changes in the kinetic and potential energies ?

D View Text Solution

Exercises

1. An astronaut inside a small space ship orbiting around the earth cannot detect gravity. If the space station orbiting around the earth has a large size, can he hope to detect gravity ?

- View Text Solution

2. If you compare the gravitational force on the earth due to the sun to that due to the moon, you would find that the Sun's pull is greater than the moon's pull. (you can check this yourself using the data available in the succeeding exercises). However, the tidal effect of the moon's pull is greater than the tidal effect of sun. Why ?
3. Acceleration due to gravity
increases/decreases with increasing altitude.

D View Text Solution
4. Acceleration due to gravity
increases/decreases with increasing depth
(assume the earth to be a sphere of uniform density).

D View Text Solution

5. Acceleration due to gravity is independent

 of mass of the earth/mass of the body.
D View Text Solution

6. Suppose there existed a planet that went around the Sun twice as fast as the earth.

What would be its orbital size as compared to
that of the earth ?

D View Text Solution
7. Let us assume that our galaxy consists of 2.5
$x \times 10^{11}$ stars each of one solar mass. How
long will a star at a distance of 50,000 ly from
the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be $10^{5} \mathrm{ly}$.

D View Text Solution

8. If the zero of potential energy is at infinity, the total energy of an orbiting satellite is negative of its kinetic/potential energy.
9. Does the escape speed of a body from the earth depend on (a) the mass of the body, (b)
the location from where it is projected, (c) the direction of projection, (d) the height of the location from where the body is launched?

- View Text Solution

10. A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant
linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential energy, (f) total energy throughout its orbit? Neglect any mass loss of the comet when it comes very close to the Sun.

D View Text Solution

11. Which of the following symptoms is likely to afflict an astronaut in space (a) swollen feet,
(b) swollen face, (c) headache, (d) orientational problem.
12. For the above problem, the direction of the gravitational intensity at an arbitrary point P is indicated by the arrow (i) d, (ii) e, (iii) f, (iv) g.

- View Text Solution

13. A rocket is fired from the earth towards the
sun. At what distance from the earth's centre
is the gravitational force on the rocket zero ?
Mass of the sun $=2 \times 10^{30} \mathrm{~kg}$. Mass of the
earth $=6 \times 10^{24} \mathrm{~kg}$. Neglect the effect of other planets etc. (orbittal radtus $=1.5 \times 10^{11} \mathrm{~m}$).

D View Text Solution

14. How will you 'weigh the sun', that is estimate its mass? The mean orbital radius of the earth around the sun is $1.5 \times 10^{8} \mathrm{~km}$.

D View Text Solution

15. A saturn year is 29.5 times the earth year.

How far is the saturn from the sun if the earth
is $1.50 x \times 10^{8} \mathrm{~km}$ away from the sun ?

D View Text Solution

16. A rocket is fired vertically with a speed of 5
$\mathrm{km} s^{-1}$ from the earth's surface. How far from
the earth does the rocket go before returning
to the earth ? Mass of the earth $=6.0 x \times 10^{24}$
kg , mean radius of the earth = $6.4 \times 10^{6} m, G=6.67 \times 10^{-11} \mathrm{~N} \quad \mathrm{~m}^{2} \mathrm{~kg}^{-2}$.

D View Text Solution

17. The escape speed of a projectile on the earth's surface is $11.2 \mathrm{~km} s^{-1}$. A body is projected out with thrice this speed. What is the speed of the body far away from the earth? Ignore the presence of the sun and other planets.
18. A satellite orbits the earth at a height of

400 km above the surface. How much energy
must be expended to rocket the satellite out
of the earth's gravitational influence? Mass of
the satellite $=200 \mathrm{~kg}$, mass of the earth $=$
$6.0 \times x 10^{24} \mathrm{~kg}$, radius of the earth $=6.4 \times 10^{6}$
$\left.\mathrm{m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2}\right) \mathrm{kg}^{-2}$.

D View Text Solution
19. Two stars each of one solar mass
$\left(=2 x \times 10^{30} \mathrm{~kg}\right)$ are approaching each other
for a head on collision. When they are a distance $10^{9} \mathrm{~km}$, their speeds are negligible.

What is the speed with which they collide ?
The radius of each star is $10^{4} \mathrm{~km}$. Assume the stars to remain undistorted until they collide.
(Use the known value of G).

- View Text Solution

20. Two heavy spheres each of mass 100 kg and radius 0.10 m are placed 1.0 m apart on a horizontal table. What is the gravitational force and potential at the mid point of the line joining the centres of the spheres ? Is an object placed at that point in equilibrium? If so, is the equilibrium stable or unstable?

D View Text Solution

Additional Exercises

1. As you have learnt in the text, a geostationary satellite orbits the earth at a height of nearly $36,000 \mathrm{~km}$ from the surface of the earth. What is the potential due to earth's gravity at the site of this satellite ? (Take the potential energy at infinity to be zero). Mass of
the earth $=6.0 \times 10^{24} \mathrm{~kg} . \quad$ radius $=6400$ km .

D View Text Solution

2. A star 2.5 times the mass of the sun and collapsed to a size of 12 km rotates with a speed of 1.2 rev. per second. (Extremely compact stars of this kind are known as neutron stars. Certain stellar objects called pulsars belong to this category). Will an object placed on its equator remain stuck to its surface due to gravity ?
(mass of the sun $=2 \times 10^{30} \mathrm{~kg}$).

D View Text Solution
3. A spaceship is stationed on Mars. How much energy must be expended on the spaceship to
launch it out of the solar system? Mass of the space ship $=1000 \mathrm{~kg}$, mass of the sun $=$
$2 \times 10^{30} \mathrm{~kg}$, mass of mars $=6.4 \times 10^{23} \mathrm{~kg}$, radius of mars $=3395 \mathrm{Km}$: radius of the orbit of mars $=2.28 \times 10^{8} \mathrm{~km}, G=6.67$ $\times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.

