©゙’ doubtnut

India's Number 1 Education App

PHYSICS

NCERT - NCERT PHYSICS(TELUGU)

MOTION IN A PLANE

Example

1. Rain is falling vertically with a speed of
$35 m s^{-1}$. A woman rides a bicycle with a speed
of $12 m s^{-1}$ in east to west direction. What is
the direction in which she should hold her umbrella?

D Watch Video Solution

2. Find the magnitude and direction of the resultant of two vectors A and B in terms of their magnitudes and angle θ between them .

3. A motorboay is racing towards north at 25 km / h and the water current in that region is $10 \mathrm{~km} / \mathrm{h}$ in the direction of 60° east of south .

Find the resultant velocity of the boat.

D View Text Solution

4. The position of a particle is given by
$r=3.0 t \hat{i}+2.0 t^{2} \hat{j}+5,0 \hat{k}$
where t is in seconds and the coefficients have
the proper units for r to be in matres. (a) Find $v(t)$ and $a(t)$ of the particle . (b) Find the magnitude and direction of $v(t)$ at $t=1.0 \mathrm{~s}$.

D View Text Solution

5. A particle stars from origin at $t=0$ with a velocity $5.0 \hat{i} m / s$ and moves in $x-y$ plane under action of a force which produces a constant acceleration of $(3.0 \hat{i}+2.0 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$.
(a) What is the y-coordinate of the particle at
the instant its x - coordinate is 84 m ?

What is the speed of the particle at this time?

D View Text Solution

6. Rain is falling vertically with a speed of $35 m s^{-1}$. A woman rides a bicycle with a speed of $12 \mathrm{~ms}^{-1}$ in east to west direction. What is the direction in which she should hold her umbrella?

D Watch Video Solution

7. Galileo , in his book Two new sciences , stated that for elevations which exceed or fall short of 45° by equal amounts, the ranges are equal. Prove this statement.

D View Text Solution

8. A hiker stands on the edge of cliff 490 m above the ground and throws a stone
horizontally with an initial speed of
$15 \mathrm{~m} \mathrm{~s}^{-1}$ Neglecting air resistance, find
the time taken by the stone to reach the
ground, and the speed with which it hits the ground . (Take $g=9.8 \mathrm{~m} \mathrm{~s}^{2}$).

D View Text Solution

9. A cricket ball is thrown at a speed of $m s^{-1}$ in a direction 30° above the horizontal

Calculate (a) the maximum height , (b) the time taken by the ball to return to the same thrower to the point where the ball returns to the same level.
10. An insect trapped in a circular groove of radius 12 cm moves along the groov steadily and completes 7 revolutions in 100 s . (a) What is the angular speed, and the linear speed of the motion ? (b) Is the acceleration vector a constant vector ? What is its magnitude ?

- View Text Solution

1. State, for each of the following physical quantities, if it is a scalar or a vector: volume, mass, speed, acceleration, density, number of moles , velocity , angular frequency displacement, angular velocity .

D View Text Solution

2. Pick out the two scalar quantities in the following list : force , angular momentum , work current, linear momentum , electric field
, average velocity, magnetic moment, relative velocity.

D View Text Solution

3. Pick out the only vector quantity in the following list : Temperature, pressure impulse
, time , power , total path length , energy , gravitational potential , coefficient of friction , charge .

D View Text Solution

4. State with reasons, whether the following
algebraic operations with scalar and vector physical quantities are meaningful :
(a) adding any two scalars, (b) adding a scalar
to a vector of the same dimesions , (c) multiplying any vector by any scalar , (d) multiplying any two scalars, (e) adding any two vectors, (f) adding a component of a vector to the same vector .

D View Text Solution

5. Read each statement below carefully and
state with reasons, if it is true of false :
(a) The magnitude of a vector is always a scalar, (b) each component of a vector is always a scalar, (c) the total path length is always equal to the magnitude of the displacement vector of a particle . (d) the average speed of a either greater or equal to the magnitude of average velocity of the particle over the same interval of time, (e)

Three vectors not lying in a plane can never add up to give a null vector .
6. Establish the following vector inequalities geometrically or otherwise :
(a) $|a+b| \leq|a|+|b|$
(b) $|a+b| \geq||a|-|b||$
(c) $|a-b| \leq|a|+|b|$
(d) $|a-b| \geq||a|-|b||$

When does the equality sign above apply?

D View Text Solution
7. Given $a+b+c+d=0$, which of the following statements are correct
(a) a,b,c and d must each be null vector,
(b) The magnitude of $(a+c)$ equals the magnitude of $(b+d)$,
(c) The magnitude of a can never be greater than the sum of the magnitudes of b, c and d,
(d) b+c must lie in the plane of and d if a and d are not collinear, and in the line of a and d, if they are collimear?
8. Three girls skatting on a circular ice ground of radius 200 m start from a point P on the edge of the ground and reach a point Q diametrically opposite to P following different paths as shown in Fig . 4.20. What is the magnitude of the displacement vector for each ? for which girl is this equal to the actual
length of path skate?

D View Text Solution
9. A cyclist starts from the centre O of a circular park of radius 1 km , reaches the adge
P of the park, then cycles along the circumference , and returns to the centre along QO as shown in Fig . 4.21. If the round trip takes 10 min , what is the (a) net displacement.
(b) average velocity, and (c) average speed of
the cyclist?

- View Text Solution

10. On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m . Starting from a given turn ,
specify the displacement of of the motorist at the third, sixth and eighth turn . Compare the magnitude of the displacement with the total path length covered by the motorist in each case.

D View Text Solution

11. A passenger arriving in a new town wishes to go from the station to a hotel located 10 km away on a straight road from the station .

A dishonest cabman takes him along a
circuitous path 23 km long and reaches the hotel in 28 min . What is (a) the average speed of the taxt , (b) the magnitude of average velocity ? Are the two equal ?

D View Text Solution

12. Rain is falling vertically with a speed of
$30 m s^{-1}$. A woman rides a bicycle with a speed of $10 \mathrm{~ms}^{-1}$ in the north to south direction. What is the direction in which she should hold her umbrella?
13. A man can swim with a speed of $4.0 \mathrm{~km} / \mathrm{h}$ in still water. How long does he take to cross a river 1.0 km wide if the river flows steadily at $3.0 \mathrm{~km} / \mathrm{h}$ and he makes his strokes normal to the river current? How far down the river does he go when he reaches the other bank ?

- View Text Solution

14. In a harbour , wind is blowing at the speed of $72 \mathrm{~km} / \mathrm{h}$ and the flag on the mast of a boat anchored in the harbour flutters along the N -

E direction. If the boat starts moving at a speed of $51 \mathrm{~km} / \mathrm{h}$ to the north, what is the direction of the flag on the mast of the boat?

D View Text Solution

15. The celling of a long hall is 25 m high What
is the maximum horizontal distance that a ball
thrown with a speed of $40 \mathrm{~ms}{ }^{-1}$ can go without hitting the ceiling of the hall ?

D View Text Solution

16. A cricketer can throw a ball to a maximum horizontal distance of 100 m . How much high above the ground can the cricketer throw the same ball?

D View Text Solution
17. A stone tied to the end of astring 80 cm
long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 25 s , what is the magnitude and direction of acceleration of the stone?

D View Text Solution

18. An aircraft executes a horizontal loop of
radius 1.00 km with a steady speed of
$900 \mathrm{~km} / \mathrm{h}$. Compare its centripetal acceleration with the acceleration due to gravity .

D View Text Solution

19. Read each statement below carefully and state, with reasons, if it is true or false :
(a) The net acceleration of a particle in circular motion is always along the radius of the circle towards the centre
(b) The velocity vector of a particle at point is always along the tangent to the path of the
particle at that point
(c) The acceleration vector of a particle in uniform circular motion averaged over one cycle is a nul vector

D View Text Solution

20. The position of a particle is given by
$r=3.0 \hat{i}-2.0 t^{2} \hat{j}+4.0 \hat{k} m$
where t is in seconds and the coefficients have
proper units for r to be in metres.
(a) Find the v and a of the particle ? (b) What
is the magnitude and direction of velocity of the particle at $t=2.0 s$?

D View Text Solution

21. A particle starts from the origin at $\mathrm{t}=0 \mathrm{~s}$
with a velocity of $10.0 \hat{j} m / s$ and moves in the
$x-y$ plane with a constant acceleration of $(8.0 \hat{i}+2.0 \hat{j}) \mathrm{m} \mathrm{s}^{-2}$ (a) At what time is the x - coordinate of the speed of the particle at the time ?

View Text Solution

22. \hat{i} and \hat{j} are unit vectors along x - and y axis respectively. What is the magnitude and direction of the vectors $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$?

What are the components of a vector
$A=2 \hat{i}+3 \hat{j}$ along the directions of
$\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$? [You may use graphical method]

- View Text Solution

23. For any arbitrary motion in space, which of
the following relations are true :
(a)
$V_{\text {average }}=(1 / 2)\left(v\left(t_{1}\right)+v\left(t_{2}\right)\right)$
(b) $V_{\text {average }}=\left[r\left(t_{2}\right)-r\left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
(c) $V(t)=V(0)+a t$
(d) $r(t)=r(0)+v(0) T+(1 / 2) a t^{2}$
(e) $a_{\text {average }}=\left[v\left(t_{2}\right)-v\left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
(The average stands for average of the quantity over the time interval t_{1} to t_{2})
24. Read each statement below acrefully and state, with reasons and examples, if it is true or false : A scalar quantity is one that
(a) is conserved in a process
(b) can never take negative values
(c) must be dimensionless
(d) does not very from one point to another in space
(e) has the same value for observers with different orientations of axes.

- View Text Solution

25. An aircraft is flying at a height of 3400 m above the ground. If the angle subtended at aground observation point by the aircraft positions 10.0 s apart is 30°, what is the speed of the aircraft ?

D View Text Solution

26. A vector has both magnitude and direaction. Does it mean that anything that has magnitude and direction is necessarily a vector ? The rotation of a body can be
specified by the direction of the axis of rotation, and the angle of rotation about the axis. Does that make any rotation a vector ?

D View Text Solution

27. Can you associate vectors with (a) the length of a wire bent into a loop, (b) a plane are a, (c) a sphere ? Explain .
28. A bullet fired at an angle of 30° with the
horizontal hits the ground 3.0 km away . By adjusting its angle of projection, can one hope to hit a target 5.0 km away? Assume the muzzle speed to be fixed and neglect air resistance.

D View Text Solution

29. A fighter plane flying horizontally at an altitude of 1.5 km with speed $720 \mathrm{~km} / \mathrm{h}$ passes
directly overhead an anti - aircraft gun. At
what angle from the vertical should the gun
be fired for the shell with muzzle speed $600 \mathrm{~ms}^{-1}$ to hit the plane? At what minimum altitude should the pilot fly the plane to avoid being hit ? (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$).

D View Text Solution

30. A cyclist is riding with a speed of $27 \mathrm{~km} / \mathrm{h}$.

As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces
his speed at the constant rate of $0.50 \mathrm{~m} / \mathrm{s}$
every second. What is the magnitude and direction of the net acceleration of the cyclist on the circular turn?

D View Text Solution

