©゙’doubtnut

PHYSICS

NCERT - NCERT PHYSICS(TELUGU)

THERMODYNAMICS

Exercises

1. A geyser heats water flowing at the rate of
3.0 litres per minute from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$. If the
geyser operates on a gas burner, what is the
rate of consumption of the fuel if its heat of combustion is $4.0 \times 104 \mathrm{~J} / \mathrm{g}$?

D Watch Video Solution

2. What amount of heat must be supplied to
$2.0 \times 10^{-2} \mathrm{~kg}$ of nitrogen (at room
temperature) to raise its temperature by $45^{\circ} \mathrm{C}$
at constant pressure ? (Molecular mass of
$\left.N_{2}=28, R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}.\right)$

- Watch Video Solution

3. Explain why
(a) Two bodies at different temperatures
T_{1} and T_{2} if brought in thermal contact do not necessarily settle to the mean
temperature $\left(T_{1}+T_{2}\right) / 2$.
(b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.
(c) Air pressure in a car tyre increases during driving.
(d) The climate of a harbour town is more
temperate than that of a town in a desert at the same latitude.

D Watch Video Solution

4. A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas
increase if the gas is compressed to half its original volume?

D Watch Video Solution

5. In changing the state of a gas adiabatically
from an equilibrium state A to another equilibrium state B, an amount of work equal
to 22.3 J is done on the system. If the gas is
taken from state A to B via a process in which
the net heat absorbed by the system is 9.35
cal, how much is the net work done by the system in the latter case ? (Take 1 cal = 4.19 J)

D Watch Video Solution

6. Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following :
(a) What is the final pressure of the gas in A
and B ?
(b) What is the change in internal energy of the gas?
(c) What is the change in the temperature of the gas?
(d) Do the intermediate states of the system
(before settling to the final equilibrium state)
lie on its P-V-T surface ?

Watch Video Solution

7. A steam engine delivers $5.4 \times 10^{8} \mathrm{~J}$ of work per minute and services $3.6 \times 10^{9} J$ of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute?

- Watch Video Solution

8. An electric heater supplies heat to a system at a rate of 100 W . If system performs work at a
rate of 75 joules per second. At what rate is the internal energy increasing?

D Watch Video Solution

9. A thermodynamic system is taken from an original state to an intermediate state by the
linear process shown in Fig. (12.13)

Its volume is then reduced to the original value from E to F by an isobaric process.

Calculate the total work done by the gas from

D to E to F
10. A refrigerator is to maintain eatables kept inside at $9^{\circ} C$. If room temperature is $36^{\circ} C$, calculate the coefficient of performance.

D Watch Video Solution

