©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - HC VERMA PHYSICS

(ENGLISH)

THE SPECIAL THEORY OF RELATIVITY

Example

1. A person in a train moving at a speed
$3 \times 10^{7} \mathrm{~ms}^{-1}$ sleeps at 10.00 p.m. by his
watch and gets up at 4.00 a.m. How long did
he sleep according to the clocks at the stations?

D View Text Solution

2. The passenger of example slept with his
head towards the engine and feet towards the guard's coach. If he measured 6 ft in the train frame, how tall is he in the ground frame?
3. Suppose the rest length of the box in figure is 30 light seconds. The train T_{1} travels at a speed of $0.8 c$. Find the time elapsed between opening of D_{1} and D_{2} in the frame of T_{1}.

- View Text Solution

4. A particle is kept at rest at the origin. A
constant force $\rightarrow F$ starts acting on it at
$t=0$. Find the speed of the particle at time t.
5. If a mass of 3.6 g is fully converted into energy, how many kilowatt hour of electrical energy will be obtained?

D Watch Video Solution

Worked Out Example

1. A hypothetical train moving with a speed of
0.6 c passes by the platform of a small station
without being slowed down. The observes on
the platform note that the length of the train
is just equal to the length of the platform which is 200 m . (a) Find the rest length of the train (b) Find the length of the platform as measured by the obsevers in the train .
A.
B.
C.
D.

Answer:
2. Unstable pions are produced as a beam in a nuclear reaction experiment. The pions leave the target at a speed of 0.995 c . The intensity of the beam reduces to half its original value as the beam travels a distance of 39 m . Find
the half - life of pions (a) in the laboratory frame, (b) in their rest frame.
A.
B.
C.

D.

Answer:

D Watch Video Solution

3. Two events A and B occur at places separated by $10^{6} \mathrm{~km}$, B occuring 5 s after A . (a)

Find the velocity of a frame in which these events occur at the same place . (b)What is the
time interval between the events in this frame ?

D Watch Video Solution

4. A satellite orbits the earth near its surface.

By what amount does the satellite's clock fall behind the earth's clock in one revolution ?

Assume that nonrelativistic analysis can be made to compute the speed of the satellite and only the time dialtion is to be taken into account for calculation of clock speeds.
A.
B.
C.
D.

Answer:

D Watch Video Solution

5. The radius of our galaxy is about $3 \times 10^{20} m$

With what speed should a person travel so
that he can reach from the centre of the galaxy to its edge in 20 years of his lifetime?

D Watch Video Solution

6. Find the speed at which the mass of an electron is double of its rest mass.

D Watch Video Solution

7. Calculate the increase in mass when a body of rest mass 1 kg is lifted up through 1 m near
the earth's surface.

- Watch Video Solution

8. A body of rest mass m_{0} collides perfectly inelastically at a speed of 0.8 c with another body of equal rest mass kept at rest. Calculate
the common speed of the bodies after the collision and the rest mass of the combined body.

- Watch Video Solution

Objective

1. If the speed of a particle moving at a relativistic speed is doubled, its linear momentum will
A. Become double
B. bocome more than double
C. remain equal
D. become less than double.
2. If a constant force acts on a particle, its acceleration will
A. remain constant
B. gradually decrease
C. gradully increase
D. be undefined.

Answer: B
(Watch Video Solution

Objective 2

1. Mark the correct statement
A. Equations of special relativity are not applicable for small speeds.

B. Equations of special relativity are

applicable for all speeds
C. Nonrelativistic equation give exact result
for small speeds.
D. Nonrelativistic equation never give exact
result.

Answer: B::D

- Watch Video Solution

Exercise

1. The guru of a yogi lives in a Himalyan cave,

1000 km away from the house of the yogi. The
yogi claims that whenever he thinks about his guru, the guru immediately knows about it.

Calcualte the minimum possible tiem interval between the yogi thinking about the guru and the guru knowing about it.

- Watch Video Solution

2. A suitcase kept on a shop's rack is measured
$50 \mathrm{~cm} \times 25 \mathrm{~cm} \times 10 \mathrm{~cm} \times$ bytheshop' sow $\neq r$
. A traveller takes this suitcase in a train moving with velocity 0.6 c . If the suitcase is placed with its length along the trains velocity , find the dimensions mesured by (a) the traveller and (b)a ground observe .

D View Text Solution

3. The length of a rod is exactly 1 m when measured at rest . What will be its length when it moves at a speed of (a) $3 \times 10^{5} \mathrm{~ms}^{-1}$ (b) $3 \times 10^{6} \mathrm{~ms}^{-1}$ and (c) $3 \times 10^{7} \mathrm{~ms}^{-1}$?

- Watch Video Solution

4. A person standing on a platform finds that a train moving with velocity, $0.6 c$ takes one second to pass by him. Find (a) the length of
the train as seen by the person and (b) the rest length of the train .

D Watch Video Solution

5. An aerplane travels over a rectangular field $100 m \times 50 m$ parallel to its length. What should be the speed of the plane so that the field becomes square in the plane frame?
6. The rest distance between patna and Delhi
is 1000 km . A nonstop train travels at $360 \mathrm{kmh}^{-1}$. (a) What is the distance between Patna and Delhi in the train frame ? (b) How much time elapses in the train frame between Patna and Delhi?

- Watch Video Solution

7. A person travels by a car at a speed of
$180 \mathrm{kmh}^{-1}$. It takes exactly 10 hours by his
wristwatch to go from the station A to the station B . (a) What is the rest distance between the two stations ? (b) How much is taken in the road frame by the car to go from the station A to the station B ?

D Watch Video Solution

8. A person travels on a spaceship moving at a speed of $5 \frac{c}{13}$. (a) Find the train interval calculate by him between the consecutive birthday celbrations of his friend on the earth
. (b) Find the time interval calculated by the
friend on the earth between the consecutive birthday celebrations of the traveller.

D Watch Video Solution

9. According to the station clocks, two babies
are born at the same instant, one in Howrah
and other in Delhi. (a) Who is elder in the
frame of 2301 up Rajdhani Experess going from Howrah to Delhi? (b) Who is elder in the
frame of 2302 Dn Rajdahni Express going from Delhi to Howrah .

D Watch Video Solution

10. Two babies are born in a moving train, one in the compartment adjacent to the engine and other in the compartment adjacent to the guard. According to the train frame, the babies are born at the same instant of time. Who is elder according to the ground frame?
11. Suppose Swrglok (heaven) is in constant motion at a speed of 0.9999 c with respect to the earth. According to the earth,s frame , how much time passes on the earth before one day passes on Swarglok?

D Watch Video Solution

12. If a person lives on the average 100 years in
his rest frame, how long does he live in the
earth frame if he spends all his life in a spaceship going at 60% of the speed of light .

D Watch Video Solution

13. An electric bulb, connected to a make and break power supply, switches off and on every second in its rest frame. What is the frequency of its switching off and on as seen from a spaceship travelling at a speed 0.8 c ?

- Watch Video Solution

14. A person travelling by a car moving at $100 \mathrm{kmh}^{-1}$ finds that his wristwatch agress
with the clock in a tower A. By what amount will his wristwatch lag or lead the clock on another tower $B, 1000 \mathrm{~km}$ (in the earth's frame) from the tower A when the car reaches there?

D Watch Video Solution

15. At what speed the volume of an object shrinks to half its rest value ?

- Watch Video Solution

16. A particular particle created in a nuclear reactor leaves a 1 cm track before decaying. Assuming that the particle moved at $0.995 c$, calculate the life of the particle (a) in the lab frame and (b) in the frame of the particle .

- Watch Video Solution

17. By what fraction does the mass of a spring
is 200 g at its natural lenth and the spring constant is ${ }^{`} 500 \mathrm{~N} \mathrm{~m}{ }^{\wedge}(-1)$

D Watch Video Solution

18. Find the increase in mass when 1 kg of
water is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
19. Find the loss in the mass of 1 mole of an
ideal monatomic gas kept in a rigid container as it cools down by $10^{\circ} \mathrm{C}$. The gas constant $R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

D Watch Video Solution

20. By what fraction does the mass of a boy increase when he starts running at a speed of $` 12 \mathrm{~km} \mathrm{~h} \wedge(-1)$?
21. A 100 W bulb together with its power supply is suspended from a sensitive balance.

Find the change in the mass recorded after the bulb remains on for 1 year.

- Watch Video Solution

22. The energy from the sun reaches just outside the earth's atmoshphere at a rate of $1400 \mathrm{Wm}^{-2}$. The distance between the sun and the earth is $1.5 \times 10^{11} \mathrm{~m}$. (a) Calculate the
rate at which the sum is losing its mass. (b)

How long will the sun last assuming a constant decay at this rate? The present mass of the sun is $2 \times 10^{30} \mathrm{~kg}$

D Watch Video Solution

23. An elcetron and a positron moving at small
speeds collide and annihilate each other. Find the energy of the resulting gamma photon .

D Watch Video Solution

24. Find the mass, the kinetic energy and the momentum of an elactron moving at 0.8c.

- Watch Video Solution

25. Through what potential difference should an electron be accelerated to give it a speed of
(a) 0.6 c , (b) 0.9 c), and (0.99 c)?

- Watch Video Solution

26. Find the speed of an elctron with kinetic energy (a) 1 eV , (b) 10 KeV and (c) 10 MeV .

D Watch Video Solution

27. What is the kinetic energy of an electron in
electronvolts with mass equal to double its real mass?

D Watch Video Solution
28. Find the speed at which the kinetic energy
of a particle will differ by 1% from
nonrelativistic value $\frac{1}{2} m_{0} V^{2}$.

D Watch Video Solution

Short Answer

1. A uniformly moving train passes by a long
platform. Consider the events ' engine
crossing the beginning of the platform' and
the ' engine crossing the end of the platform '.
Which frame (train frame (train frame or the platform frame) is the proper frame for the pair of events?

- Watch Video Solution

2. A person travelling in a fast spaceship measures the distance between the earth and
the moon. Is it the same, smaller or larger than the value quoted in this book?
\square
