©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

NCERT - NCERT CHEMISTRY(TELUGU)

SOLUTIONS

Example

1. Calculate the mole fraction of ethylene
glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ in a solution containing
20% of $C_{2} H_{6} O_{2}$ by mass.
2. Calculate the molarity of a solution containing 5 g of Sodium Hydroxide (NaOH) in 450 ml solution.

- Watch Video Solution

3. Calculate molality of 2.5 of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in 75 g of benzene.

- Watch Video Solution

4. If N_{2} gas is bubbled through water at 293 K , how many millimoles of N_{2} gas would dissolve in 1 litre of water ? Assume that N_{2} exerts a partial pressure of 0.987 bar. Given that Henry's law constant for N_{2} at 293 K is 76.48 k bar.

- Watch Video Solution

5. Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298 K are

200 mm Hg and 415 mm Hg respectively. (i)

Calculate the vapour pressure of the solution
prepared by mixing 25.5 g of CHCl_{3} and 40 g of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K and (ii) mole fractions of each component in vapour phase.

D Watch Video Solution

6. The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A nonvolatile, non-electrolyte solid weighing 0.5 g when added to 39.0 g of benzene (molar mass
$\left.78 \mathrm{~g} \mathrm{~mol}^{-1}\right)$, vapour pressure of the solution, then, is 0.845 bar. What is the molar mass of the solid substance?

- Watch Video Solution

7. 18 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is dissolved in 1 kg of water in a saucepan. At what temperature will water boil at 1.013 bar ? K_{b} for water is $0.52 \mathrm{~kg} \mathrm{~mol}^{-1}$.
8. The boiling point of benzene is 353.23 K .

When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point is raised to 354.11 K . Calculate the molar mass of the solute. K_{b} for benzene is $2.53 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.

- Watch Video Solution

9.45 g of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ is mixed with 600 g of water. Calculate (a) the freezing
point depression and (b) the freezing point of the solution.

D Watch Video Solution

10. 1.00 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point of benzene by 0.40 K . The freezing point depression constant of benzene is 5.12 K kg mol^{-1}. Find the molar mass of the solute.
11. $200 \mathrm{~cm}^{2}$ of $a n$ aqueous solution of a protein contains 1.26 g of the protein. The oxmotic pressure of such a solution at 300 K is found to be 2.57×10^{-3} bar. Calculate the molar mass of the protein.

D Watch Video Solution

12. 2 g of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$
dissolved in 25 g of benzene shows a depression in freezing point equal to 1.62 K .

Molal depression constant for benzene is 4.9 K
$\mathrm{kg} \mathrm{mol}^{-1}$. What is the precentage association of acid if it forms dimer in solution?

D Watch Video Solution

13. 0.6 mL of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$, having density $1.06 \mathrm{~g} \mathrm{~mL}^{-1}$, is dissolved in 1 litre of water. The depression in freezing point observed for this strength of acid was
$0.0205^{\circ} C$. Calculate the van't Hoff factor and the dissociation constant of acid.

Intext Questions

1. Calculate the mass percentage of benzene
$\left(C_{6} H_{6}\right)$ and carbon tetrachloride $\left(C C l_{4}\right)$ if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

Then, calculate the mass percentage from the formula

$$
\text { Mass } \%=\frac{\text { Mass of one component }}{\text { Mass of solution }} \times 100
$$

D Watch Video Solution

2. Calculate the mole fraction of benzene is solution containing 30% by mass in carbon tetrachloride.

Then calculate the mole fraction by using the formula

Mole fraction of a component
Number of moles of the component
$=\overline{\text { Total number of moles of all components }}$
$x_{A}=\frac{n_{A}}{n_{A}+n_{B}}$

D Watch Video Solution

3. Calculate the molarity of each of the following solution :
(a) 30 g of $\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in 4.3 L of solution.
(b) 30 mL of $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$ diluted to 500 mL .
(a) Molarity $=\frac{\text { moles of solute }}{\text { Volume of solution litre }}$
and moles of
solute mass of solute $=\overline{\text { molar solution of solute }}$

So, first find molar mass by adding atomic masses of different elements, then find moles of solute and then molarity.
(b) Use molarity equation for dilution.
$M_{1} V_{1}=M_{2} V_{2}$
(Before dilution) (After dilution)

D Watch Video Solution

4. Calculate the mass of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$
required in making 2.5 kg of 0.25 molar aqueous solution.

We $\begin{gathered}\text { know that } \\ = \\ \text { Mass of solvent in } \mathrm{kg}\end{gathered}$
and moles of soute $=\frac{\text { Mass of solute }}{\text { Molar mass of solute }}$
So, find the molar mass of solute by adding
atomic masses of different element present in
it and mass by using the formula,
Molality
$=\frac{\text { Mass of solute } / \text { molar mass of solute }}{\text { Mass of solvent in } \mathrm{kg}}$

D Watch Video Solution

5. Calculate a) molality b) molarity and c) mole fraction of KI if the density of 20% (mass / mass) aqueous KI is $1.202 \mathrm{~g} \mathrm{~mL}^{-1}$.

As density and \% by mass is given, so find the mass of solute and solvent (as x \% solution
contains $x \mathrm{~g}$ solute in $(100-\mathrm{x}) \mathrm{g}$ solvent).

Find volume of the solution, by using,"
Volume $=\frac{\text { Mass }}{\text { Density }}$
Recall the formulae of molality, molarity and mole fraction, to calculate them.

Molality
$=\frac{\text { Mass of solute } / \text { molar mass of solute }}{\text { Mass of solventin kg }}$

- Watch Video Solution

6. $H_{2} S$, a toxic gas with rotten egg like smell,
is used for the qualitative analysis. If the
solubility of $H_{2} S$ in water at STP is 0.195 m , calculate Henry's law constant.

D Watch Video Solution

7. Henry's law constant for CO_{2} in water is
$1.67 \times 10^{8} \mathrm{~Pa}$ at 298 K . Calculate the quantity
of CO_{2} in 500 mL of soda water when packed under 2.5 atm CO_{2} pressure at 298 K .
8. The vapour pressure of pure liquids A and B are 450 and 700 mm Hg respectively, at 350 K .

Find out the composition of the liquid mixture if total vapour pressure is 600 mm Hg . Also find the composition of the vapour phase.
Apply
Raoult's
law
$P_{T}=P_{A}^{0} x_{A}+P_{B}^{0} x_{B}=P_{B}^{0} x_{A}+P_{B}^{0}\left(1-x_{A}\right)$
to calculate mole fraction of $A\left(x_{A}\right)$ and
$B\left(x_{B}\right)$.
In vapour phase, partial pressure are used insted of number of moles.
9. Vapour pressure of pure water at 298 K is
23.8 mm Hg. 50 g urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering.

Consider Raoult's law and formula for relative
lowering in vapour pressure,
$\frac{P_{A}^{0}-P_{s}}{P_{A}^{0}}=\frac{n_{B}}{n_{A}}=\frac{W_{B}}{M_{B}} \times \frac{M_{A}}{W_{A}}$
Where, $\frac{P_{A}^{0}-P_{s}}{P_{A}^{0}}$ is called relative lowering in vapour pressure.

- Watch Video Solution

10. Boiling point of water 750 mm Hg is $99.63^{\circ} \mathrm{C}$. How much sucrose is to be added to 500 g of water such that it boils at $100^{\circ} \mathrm{C}$.
[K_{b} for water is $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
i) Since boiling point is changing, apply the formula for elevation in boiling point,
$\Delta \mathrm{T}_{b}=K_{b} m$
ii) $m=\frac{W_{B}}{M_{B} \cdot W_{A}}$

So, $\Delta T_{b}=\frac{K_{b} . W_{B}}{M_{B} \times W_{A}}$
Or $W_{B}=\frac{\Delta T_{b} \times M_{B} \times W_{A}}{K_{b}}$
iii) Find ΔT_{b} as $\Delta T_{b}=T_{b}=T_{b}-T_{b}^{0}$
$T_{b}=$ Boiling point of solution
$T_{b}^{0}=$ Boiling point of pure solvent

- Watch Video Solution

11. Calculate the mass of ascorbic acid (Vitamin

C, $C_{6} H_{8} O_{6}$) to be dissolved in 75 g of acetic acid to lower its melting point by $1.5^{\circ} C . K_{f}=3.9 \mathrm{Kkg} \mathrm{mol}^{-1}$

- Watch Video Solution

12. Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at $37^{\circ} \mathrm{C}$

- Watch Video Solution

Exrecises

1. How many types of solutions are formed ?

Givee an example for each type of solution.
2. Suppose a solid solution is formed between
two substances, one whose particles are very
large and the other whose particles are very small. What kind of solid solution is this likely to be?

- Watch Video Solution

3. Define the following terms:
(i) Mole fraction (ii) Molality (iii) Molarity (iv)

Mass percentage.

- Watch Video Solution

4. Concentrated nitric acid used in the
laboratory work is 68% nitric acid by mass in aqueous solution. What should be the molarity of such a sample of the acid if the denisty of the solution is $1.504 \mathrm{~mL}^{-1}$?

D Watch Video Solution

5. A solution of glucose in water is labelled as
$10 \% \mathrm{w} / \mathrm{w}$. What would be the molarity of the solution ?

D Watch Video Solution

6. How many ml of 0.1 HCl is required to react completely with 1.0 g mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and
NaHCO_{3} containing equi-molar amounts of both ?
7. A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass. Calculate the mass percentage of the resulting solution.

- Watch Video Solution

8. An antifreeze solution is prepared from 222.6 g of ethylene glycol $\left[\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)\right.$] and 200 g of water (solvent). Calculate the molality of the solution.

- Watch Video Solution

9. A sample of drinking water was found to be severely contaminated with chloroform
$\left(\mathrm{CHCl}_{3}\right)$ supposed to be a carcinogen. The level of contamination was 15 ppm (by mass):
(i) express this in percent by mass
(ii) determine the molality of chloroform in the water sample.
10. What role do the molecular interactions play in a solution of alcohol and water ?

D Watch Video Solution

11. Why do gases always tend to be less soluble in liquids as the temperature is raised ?

D Watch Video Solution
12. State Henry's law and mention some important applications?

D Watch Video Solution

13. The partial pressure of ethane over a solution containing $6.50 \times 10^{-3} \mathrm{~g}$ of ethane is 1 bar. If the solution contains $5.00 \times 10^{-2} g$ of ethane, then what shall be the partial pressure of the gas?
14. What is meant by positive deviations from Raoult's law and how is the sign of $\Delta_{\text {mix }} H$ related to positive deviation from Raoult's law ?

- Watch Video Solution

15. An aqueous solution of 2% non volatile solute exerts a pressure of 1.004 bar at the normal boiling point of the solvent. What is the molecular mass of the solute?
16. Heptane and Octane form an ideal solution.

At 373 K the vapour pressure of the two liquid components are $105.2 \mathrm{kP}_{a}$ and $46.8 \mathrm{kP}_{a}$ respectively. What will be the vapour pressure of a mixture of 26.0 g heptane and 35 g of octane?

-
 Watch Video Solution

17. The vapour pressure of water is $12.3 \mathrm{k} P_{a}$ at 300 K. Calculate the vapour pressure of 1 molal solution of a non-volatile solute in it.

D Watch Video Solution

18. Calculate the mass of a non-volatile solute
(molar mass $40 \mathrm{~g} \mathrm{~mol}^{-1}$) which should be dissolved in 114 g Octane to reduce its vapour pressure to 80%.
19. A solution containing 30 g of non-volatile solute exactly in 90 g of water has a vapour pressure of $2.8 \mathrm{kP}_{a}$ at 298 K . Further 18 g of water is then added to the solution and the new vapur pressure becomes $2.9 \mathrm{kP}_{a}$ at 298
K. Calculate (i) The moar mass of the solute and (ii) Vapour pressure of water at 298 K .
20. A 5% solution (by mass) of cane suger in water has freezing point of 271K. Calculate the
freezing point of 5% glucose in water if freezing point of water is 273.15 K .

- Watch Video Solution

21. Two elements A and B from compounds
having formula AB_{2} and AB_{4}. When dissolved in 20 g of Benzene $\left(C_{6} H_{6}\right)$, 1 g of AB_{2} lowers
the freezing point by 2.3 K whereas 1.0 g of
AB_{4} lowers it by 1.3 K . The molar depression constant for benzene is $5.1 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}{ }^{-1}$. Calculate atomic masses of A and B.

D Watch Video Solution

22. At $300 \mathrm{~K}, 36 \mathrm{~g}$ of glucose present in a litre of its solution has an osmotic pressure of 4.98
bar. If the osmotic pressure of the solution is
1.52 bars at the same temperature, what would be its concentration?
23. Suggest the most important type of intermolecular attractive interaction in the following pairs.
(i) n-hexane and n-octane
(ii) I_{2} and $C C l_{4}$
(iii) $\mathrm{NaClO} \mathrm{O}_{4}$ and water
(iv) methanol and acetone
(v) acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and acetone $\left(C_{3} H_{6} O\right)$
24. Based on solute-solvent interactions, arrange the following in order of increasing solubility in n-octane and explain. Cyclohexane, $\mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CN}$

D Watch Video Solution

25. Amongst the following compounds, identify which are insoluble, partially soluble and highly soluble in water. (i) phenol
toluene (iii) formic acid (iv) ethylene glycol (v) chloroform (vi) pentanol.
26. If the density of some lake water is 1.25 $\mathrm{g} \mathrm{mL}^{-1}$ and contains 92 g of Na^{+}ions per kg of water, calculate the molality of Na^{+}ions in the lake.

- Watch Video Solution

27. If the solubility product of CuS is
6×10^{-16}, calculate the maximum molarity of

CuS in aqueous solution.

- Watch Video Solution

28. Calculate the mass precentage of aspirin
$\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ in acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ when 6.5
gm of $C_{9} H_{8} O_{4}$ is dissolved in 450 g of
$\mathrm{CH}_{3} \mathrm{CN}$.

D Watch Video Solution
29. Nalorphene $\left(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$, similar to morphine, is used to combat withdrawal symptoms in narcotic users. Dose of nalorphene generally given is 1.5 mg . Calculate the mass of $1.5-10^{3} \mathrm{~m}$ aqueous solution required for the above dose

D Watch Video Solution

30. Calculate the amount of benzoic acid $\left(C_{6} H_{5} \mathrm{COOH}\right)$ required for preparing 250 ml
of 0.15 M solution in methanol.

- Watch Video Solution

31. The depression in freezing point of water observed for the same amount of acetic acid, dichloro-acetic acid and trichloro acetic acid increases in the order given above. Explain briefly.

D Watch Video Solution

32. Calculate the depression in the freezing point of water when 10 g of
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCOOH}$ is added to 250 g water. $K_{a}=1.4 \times 10^{-3}, K_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.

- Watch Video Solution

33. 19.5g of $\mathrm{CH}_{2} \mathrm{FCOOH}$ is dissolved in 500 g of water. The depression in freezing point of water observed is $1.0^{\circ} \mathrm{C}$. Calculate the Van't

Hoff factor and dissociation constant of fluoroacetic acid.

D Watch Video Solution

34. Vapour pressure of of water at 293 K is
17.535 mm Hg . Calculate the vapour pressure of the solution at 293 K when 25 g of glucose is dissolved in 450 g of water ?

D Watch Video Solution
35. Henry's law constant for the molality of methane in benzene at 298 K is $4.27 \times 10^{5} \mathrm{~mm}$

Hg . Calculate the solubility of methane in benzene at 298 K under 760 mm Hg .

- Watch Video Solution

36. 100 g of liquid $A\left(\right.$ molar mass $140 \mathrm{~g} \mathrm{~mol}^{-1}$)
was dissolved in 1000 g of liquid B (molar mass
$180 \mathrm{~g} \mathrm{~mol}^{-1}$). The vapour pressure of pure
liquid B was found to be 500 torr. Calculate
the vapour pressure of pure liquid A and its
vapour pressure in the solution if the total
vapour pressure of the solution is 475 torr.

D Watch Video Solution

37. Benzene and Toluene form ideal solution over the entire range of composition. The
vapour pressure of pure benzene and toluene at 300 K are 50.71 mm of Hg and 32.06 mm of

Hg respectively. Calculate the mole fraction of
benzene in vapour phase if 80 g of benzene is mixed with 100 g of toluene.

D Watch Video Solution

38. The air is a mixture of a number of gases.

The major components are oxygen and nitrogen with approximate proportion of 20% is to 79% by volume at 298 K . The water is in equilibrium with air at a pressure of 10 atm. At

298 K if the Henry's law constants for oxygen and nitrogen at 298 K are $3.30 \times 10^{7} \mathrm{~mm}$ and
$6.51 \times 10^{7} \mathrm{~mm}$ respectively, calculate the composition of these gases in water.

D Watch Video Solution

39. Determine the amount of CaCl_{2} (i=2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at $27^{\circ} \mathrm{C}$.

D Watch Video Solution

40. Determine the osmotic pressure of a solution prepared by dissolving 25 mg of $K_{2} S O_{4}$ in two litre of water at $25^{\circ} \mathrm{C}$ assuming that it is completely dissociated.

D Watch Video Solution

