©゙" doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT

MATHEMATICS(TELUGU)

APPLICATION OF DERIVATIVES

Example

1. Find the rate of change of the area of a
circle per second with respect to its radius r
when $r=5 \mathrm{~cm}$.

- Watch Video Solution

2. The volume of a cube is increasing at a rate of 9 cubic centimetres per second. How fast is
the surface area increasing when the length of an edge is 10 centimetres ?

D Watch Video Solution
3. A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm per second. At the instant, when the radius of the circular wave is 10 cm , how fast is the enclosed area increasing?

D Watch Video Solution

4. The length x of a rectangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $2 \mathrm{~cm} /$ minute. When x
$=10 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rates of change of
(a) the perimeter and (b) the area of the rectangle.

- Watch Video Solution

5. The total cost $C(x)$ in Rupees, associated with the production of x units of an item is given by
$C(x)=0.005 x^{3}-0.02 x^{2}+30 x+5000$
Find the marginal cost when 3 units are produced, where by marginal cost we mean
the instantaneous rate of change of total cost at any level of output.

D Watch Video Solution

6. The total revenue in Rupees received from
the sale of x units of a product is given by $R(x)$
$=3 x^{2}+36 x+5$. Find the marginal revenue,
when $x=5$, where by marginal revenue we mean the rate of change of total revenue with respect to the number of items sold at an instant.

Watch Video Solution

7. Show that the function given by $f(x)=7 x-3$
is increasing on R .

D Watch Video Solution

8. Show that the function f given by
$f(x)=x^{3}-3 x^{2}+4 x, x \in \mathrm{R}$ is increasing on R .
9. Prove that the function given by $f(x)=\cos x$
is
(a) decreasing in ($0, \pi$)
(b) increasing in ($\pi, 2 \pi$), and
(c) neither increasing nor decreasing in ($0,2 \pi$)

- Watch Video Solution

10. Find the intervals in which the function f given by $f(x)=x^{2}-4 x+6$ is
(a) increasing (b) decreasing

D Watch Video Solution

11. Find the intervals in which the function f given by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is (a) increasing (b) decreasing.

(Watch Video Solution

12. Find the intervals in which the function given by : $f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$.
is strictly increasing and strictly decreasing.

D Watch Video Solution

13. Find the slope of the tangent to the curve $y=x^{3}-x$ at $\mathrm{x}=2$.

D Watch Video Solution

14. Find the point at which the tangent to the
curve $y=\sqrt{4 x-3}-1$ has its slope $\frac{2}{3}$.
15. Find the equation of all lines having slope 2 and being tangent to the curve
$y+\frac{2}{x-3}=0$.

D Watch Video Solution

16. Find points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are (i) parallel to x-axis (ii) parallel to y-axis.
17. Find the equation of the tangent to the
curve $y=\frac{x-7}{(x-2)(x-3)}$ at the point where it cuts the x-axis.

D Watch Video Solution

18. Find the equations of the tangent and normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ at $(1,1)$.

D Watch Video Solution
19. Find the equation of tangent to the curve given by $x=a \sin ^{3} t, y=b \cos ^{3} \mathrm{t}$ at a point where $\mathrm{t}=\frac{\pi}{2}$.

D Watch Video Solution

20. Use differential to approximate $\sqrt{36.6}$.

D Watch Video Solution

21. Use differential to approximate $(25)^{\frac{1}{3}}$.
22. Find the approximate value of f (3.02), where $f(x)=3 x^{2}+5 x+3$.

- Watch Video Solution

23. Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 2%.
24. If the radius of a sphere is measured as 9
cm with an error of 0.03 cm , then find the approximate error in calculating its volume.

D Watch Video Solution

25. Find the maximum and the minimum
values, if any, of the function f given by
$\mathrm{f}(\mathrm{x})=x^{2}, x \in \mathrm{R}$.

D Watch Video Solution
26. Find the maximum and minimum values of
f , if any, of the function given by $\mathrm{f}(\mathrm{x})=|\mathrm{x}|, \mathrm{x} \in$ R.
(Watch Video Solution
27. Find the maximum and the minimum
values, if any, of the function given by
$f(x)=x, x \in(0,1)$

- Watch Video Solution

28. Find all points of local maxima and local minima of the function f given by $f(x)=x^{3}-3 x+3$.

D Watch Video Solution

29. Find all the points of local maxima and local minima of the function f given by

$$
f(x)=2 x^{3}-6 x^{2}+6 x+5
$$

D Watch Video Solution
30. Find local minimum value of the function f given by $f(x)=3+|x|, x \in R$.

- Watch Video Solution

31. Find local maximum and local minimum
values of the function f given by

$$
\mathrm{f}(\mathrm{x})=3 x^{4}+4 x^{3}-12 x^{2}+12
$$

- Watch Video Solution

32. Find all the points of local maxima and local minima of the function f given by $f(x)=2 x^{3}-6 x^{2}+6 x+5$.

D Watch Video Solution

33. Find two positive numbers whose sum is 15 so that the sum of their squares is minimum.

D Watch Video Solution

34. Let $A P$ and $B Q$ be two vertical poles at points A and B, respectively. If $A P=16 \mathrm{~m}, B Q=$ 22 m and $A B=20 \mathrm{~m}$, then find the distance of a point R on $A B$ from the point A such that $R P^{2}+R Q^{2}$ is minimum.

D Watch Video Solution

35. If the length of three sides of a trapezium
other than base are equal to 10 cm , then find
the area of trapezium when it is maximum.
36. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

- Watch Video Solution

37. Find the absolute maximum and minimum
values of a function f given by
$\mathrm{f}(\mathrm{x})=2 x^{3}-15 x^{2}+36 x+1$ on the interval $[1$, 5].

- Watch Video Solution

38. Find the absolute maximum and minimum
values of the function.
$f(x)=12 x^{4 / 3}-6 x^{1 / 3} \in(-1,1)$

- Watch Video Solution

39. An Apache helicopter of enemy is flying along the curve given by $y=x^{2}+7$. A soldier, placed at $(3,7)$, wants to shoot down the helicopter when it is nearest to him. Find the nearest distance.

D Watch Video Solution

40. A car starts from a point P at time $t=0$ seconds and stops at point Q. The distance x, in metres, covered by it, in t seconds is given
by $x=t^{2}\left(2-\frac{t}{3}\right)$ Find the time taken by it
to reach Q and also find distance between P and Q .

D Watch Video Solution

41. A water tank has the shape of an inverted right circular cone with its axis vertical and vertext lowermost. Its semi-vertical angle is $\tan ^{-1}(0.5)$. Water is poured into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of the water is
rising at the instant when the depth of water in the tank is 4 m .

D Watch Video Solution

42. A man of height 2 metres walks at a uniform speed of $5 \mathrm{~km} / \mathrm{h}$ away from a lamp post which is 6 metres high. Find the rate at which the length of his shadow increases.

D Watch Video Solution

43. The equation of the normal to the curve $x^{2}=4 y$ at $(1,2)$ is

D Watch Video Solution

44. Find the equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi \quad$ that are
parallel to the line $x+2 y=0$

D Watch Video Solution
45. Show that the function f given by $f(x)$ $=\tan ^{-1}(\sin x+\cos x), x>0$ is always an strictly increasing functions in $\left(0, \frac{\pi}{4}\right)$

D Watch Video Solution

46. Manufacturer can sell x items at a price of rupees $R s\left(5-\left(\frac{x}{100}\right)\right)$ each. The cost price of x items is $R s\left(\left(\frac{x}{5}\right)+500\right)$. Find the number of items he should sell to earn maximum profit.

Exercise 61

1. Find the rate of change of the area of a circle with respect to its radius r when
(a) $r=3 \mathrm{~cm}$
(b) $r=4 \mathrm{~cm}$

- Watch Video Solution

2. The volume of a cube is increasing at a rate
of 8 cubie centimeters per second. How fast is
the surface area increasing when the length of the edge is 12 cm ?

D Watch Video Solution

3. The radius of a circle is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$. Find the rate at which
the area of the circle is increasing when the radius is 10 cm .
4. An edge of a variable cube is increasing at the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the volume of the cube increasing when the edge is 10 cm long?

D Watch Video Solution

5. A stone is dropped into a quiet lake and ripples move in circles at the speed of 5 $\mathrm{cm} / \mathrm{sec}$. At the instant when the radius of
circular ripple is 8 cm , how fast is the enclosed area increases?

D Watch Video Solution

6. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?

- Watch Video Solution

7. The length x of a rectangle is decreasing at the rate of $5 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $4 \mathrm{~cm} /$ minute. When x
$=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rates of change of
(a) the perimeter, and (b) the area of the rectangle.

- Watch Video Solution

8. A balloon which always remains spherical on
inflation is being inflated by pumping in 900
cubic centimeters of gas per second. Find the rate at which the radius of balloon increases when the radius in 15 cm .

D Watch Video Solution

9. A balloon, which always remains spherical
has a variable radius. Find the rate at which its
volume is increasing with the radius when the later is 10 cm .
10. A ladder 5 m long is leaning against a wall.

The bottom of the ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~cm} / \mathrm{s}$. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall ?

D Watch Video Solution

11. A particle moves along the curve $6 y=$ $x^{3}+2$. Find the points on the curve at which
the y-coordinate is changing 8 times as fast as the x-coordinate.

D Watch Video Solution

12. The radius of an air bubble is increasing at the rate of $1 / 2 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume of the bubble increasing when the radius is 1 cm ?
13. A balloon, which always remains spherical,
has a variable diameter $\frac{3}{2}(2 x+1)$. Find the rate of change of its volume with respect to x .

D Watch Video Solution

14. Sand is pouring from a pipe at the rate of

12 cubic $\mathrm{cm} . / \mathrm{sec}$. The falling sand forms a cone
on the ground in such a way that the height of
the cone is always one-sixth of the radius of
the base. At which rate is the height of the
sand-cone increasing when the height is 4 cm .
?

- Watch Video Solution

15. The total cost $C(x)$ in Rupees associated with the production of x units of an item is given by
$C(x)=0.007 x^{3}-0.003 x^{2}+15 x+4000$.
Find the marginal cost when 17 units are produced.

D Watch Video Solution
16. The total revenue in Rupees received from the sale of x units of a product is given by $R(x)=13 x^{2}+26 x+15$.

Find the marginal revenue when $x=7$.

D Watch Video Solution

17. The rate of change of the area of a circle with respect to its radius r at $r=6 \mathrm{~cm}$ is
A. 10π
B. 12π
C. 8π
D. 11π

Answer: B

D Watch Video Solution

18. The total revenue in Rupees received from
the sale of x units of a product is given by
$R(x)=3 x^{2}+36 x+5$. The marginal revenue,
when $x=15$ is
A. 116
B. 96
C. 90
D. 126

Answer: D

- Watch Video Solution

Exercise 62

1. Show that the function given by $f(x)=3 x+$

17 is increasing on R.

- Watch Video Solution

2. Show that the function given by $\mathrm{f}(\mathrm{x})=e^{2 x}$ is increasing on R .
(D) Watch Video Solution
3. Find the intervals in which the function f given by $\mathrm{f}(\mathrm{x})=2 x^{2}-3 x$ is
(a) increasing (b) decreasing

- Watch Video Solution

4. Find the intervals in which the function f given by $\mathrm{f}(\mathrm{x})=2 x^{3}-3 x^{2}-36 x+7$ is
(a) increasing (b) decreasing
5. Find the intervals in which the following functions are strictly increasing or strictly decreasing.
$x^{2}+2 x-5$

- Watch Video Solution

6. Find the intervals in which the functions are strictly increasing or decreasing:

$$
10-6 x-2 x^{2}
$$

7. Find the intervals in which the functions are strictly increasing or decreasing:
$-2 x^{3}-9 x^{2}-12 x+1$

- Watch Video Solution

8. Find the intervals in which the following
functions are strictly increasing or strictly decreasing.
$6-9 x-x^{2}$
9. Find the intervals in which the functions are strictly increasing or decreasing:
$(x+1)^{3}(x-3)^{3}$

- Watch Video Solution

10. If $\mathrm{f}(\mathrm{x})=\log (1+x)-\frac{2 x}{2+x}$ is increasing, then...........
11. Find the values of x for which $\mathrm{y}=[x(x-2)]^{2}$
is an increasing function.

D Watch Video Solution
12. Prove that $y=4 \frac{\sin \theta}{2+\cos \theta}-\theta$, is an
increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.
(Watch Video Solution
13. Prove that the logarithmic function is increasing on $(0, \infty)$.

- Watch Video Solution

14. Prove that the function f given by $f(x)=$ $x^{2}-x+1$ is neither strictly increasing nor decreasing on (-1, 1).

D Watch Video Solution
15. Which of the following functions are decreasing on $0, \frac{\pi}{2}$?
A. $\cos x$
B. $\cos 2 x$
C. $\cos 3 x$
D. $\tan x$

Answer: A::B
(Watch Video Solution
16. On which the following intervals in the function $x^{100}+\sin x-1$ decreasing ?
A. $(0,1)$
B. $\frac{\pi}{2}, \pi$
С. $0, \frac{\pi}{2}$
D. None of these

Answer: D

D Watch Video Solution
17. For what values of a the function f given by
$f(x)=x^{2}+a x+1$ is increasing on $[1,2]$?

- Watch Video Solution

18. Let I be any interval disjoint from [$-1,1$]

Prove that the function f given by
$f(x)=x+\frac{1}{x}$ is increasing on I .

- Watch Video Solution

19. Prove that the function f given by $f(x)=$ $\log (\sin \mathrm{x})$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$

- Watch Video Solution

20. Prove that the function f given by $f(x)=\log |\cos x|$ isdecrea $\sin \operatorname{gon}\left(0, \frac{\pi}{2}\right)$
and increasing on $\left(3 \frac{\pi}{2}, 2 \pi\right)$

D Watch Video Solution

21. Prove that the function given by $f(x)=$ $x^{3}-3 x^{2}+3 x-100$ is increasing in R .

- Watch Video Solution

22. The interval in which $y=x^{2} e^{-x}$ is increasing is
A. $(-\infty, \infty)$
B. $(-2,0)$
C. $(2,00)$
D. $(0,2)$

Answer: D

- Watch Video Solution

Exercise 63

1. Find the slope of the tangent to the curve
$y=3 x^{4}-4 x$ at $\mathrm{x}=4$.

- Watch Video Solution

2. Find the slopr of the tangent to the curve
$y=\frac{x-1}{x-2}$ at $x \neq 2$ and $x=10$.

D Watch Video Solution

3. Find the slope of the tangent to the curve $y=x^{3}-x+1$ at the point whose x coordinate is 2.
4. Find the slope of the tangent to the curve, $y=x^{3}-3 x+2$ at the point whose x coordinate is 3.

D Watch Video Solution

5. Find the slope of the normal to the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$.

D Watch Video Solution

6. Find the slope of the normal to the curve $x=1$
-a $\sin \theta, \mathrm{y}=\mathrm{b} \cos ^{2} \theta$ at $\theta=\frac{\pi}{2}$.

D Watch Video Solution

7. Find the points at which the tangent to the
curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to
the x-axis.

- Watch Video Solution

8. Find a point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points $(2,0)$ and (4, 4).

D Watch Video Solution

9. Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent is $y=x-11$
10. Find the equation of all lines having slope -

1 that are tangents to the curve
$y=\frac{1}{x-1}, x \neq 1$.

- Watch Video Solution

11. Find the equation of all lines having slope 2 which are tangents to the curve
$y=\frac{1}{x-1}, x \neq 1$.

D View Text Solution
12. Find the equations of all lines having slope

0 which are tangent to the curve
$y=\frac{1}{x^{2}-2 x+3}$.

- Watch Video Solution

13. Find points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are
(i) parallel to x-axis (ii) parallel to y-axis.
14. Find the equations of the tangent to the given curves at the indicated points:
$y=x^{4}-6 x^{3}+13 x^{2}-10 x+51$ at $(0,5)$

- Watch Video Solution

15. Find the equations of the tangent and normal to the given curves at the indicated points:

$$
y=x^{4}-6 x^{3}+13 x^{2}-10 x+5 a t(1,3)
$$

16. Find the equations of the tangent to the given curves at the indicated points:
$y=x^{3}$ at $(1,1)$

D Watch Video Solution

17. Find the equations of the tangent to the given curves at the indicated points:
$y=x^{2}$ at $(0,0)$
18. Find the equations of the tangent to the given curves at the indicated points:
$\mathrm{x}=\cos \mathrm{t}, \mathrm{y}=\sin \mathrm{t}$ at $\mathrm{t}=\frac{\pi}{4}$

D Watch Video Solution

19. Find the equation of the tangent line to
the curve $\mathrm{y}=x^{2}-2 \mathrm{x}+7$ which is
(a) parallel to the line $2 x-y+9=0$
(b) perpendicular to the line $5 y-15 x=13$.
20. Show that the tangents to the curve $y=$
$7 x^{3}+11$ at the points where $\mathrm{x}=2$ and $\mathrm{x}=-2$ are parallel.

D Watch Video Solution

21. Find the points on the curve $\mathrm{y}=x^{3}$ at which
the slope of the tangent is equal to the y coordinate of the point.
22. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.

D Watch Video Solution

23. The point on the curve
$x^{2}+y^{2}-2 x-3=0$ at which the tangent is
parallel to x-axis is

D Watch Video Solution

24. Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$

- Watch Video Solution

25. Find the equation of the normals to the
curve $y=x^{3}+2 x+6$ which are parallel to
the line $x+14 y+4=0$
(Watch Video Solution
26. Find the equations of the tangent and normal to the parabola $y^{2}=4 \mathrm{ax}$ at the point
($\left.a t^{2}, 2 \mathrm{at}\right)$.

D Watch Video Solution

27. The condition that the two curves
$x=y^{2}, x y=k$ cut orthogonally is

D Watch Video Solution
28. Find the equation of tangent and normal to the hyprobola $x^{2}=4 y$ at $\left(a t^{2}, 2 a t\right)$

D Watch Video Solution

29. Find the equation of the tangent to the
curve $\mathrm{y}=\sqrt{3 x-2}$ which is parallel to the line
$4 x-2 y+5=0$.

- Watch Video Solution

30. The slope of the normal to the curve $y=$ $2 x^{2}+3 \sin x$ at $x=0$ is
A. 3
B. $\frac{1}{3}$
C. -3
D. $-\frac{1}{3}$

Answer: D
(Watch Video Solution
31. The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point
A. $(1,2)$
B. $(2,1)$
C. $(1,-2)$
D. $(-1,2)$

Answer: A

D Watch Video Solution

1. Using differentials, find the approximate value of each of the up to 3 places of decimal. $\sqrt{25.3}$

- Watch Video Solution

2. Using differentials, find the approximate
value of each of the up to 3 places of decimal.
$\sqrt{49.5}$
3. Using differentials, find the approximate value of each of the up to 3 places of decimal. $\sqrt{0.6}$

D Watch Video Solution

4. Using differentials, find the approximate
value of each of the up to 3 places of decimal.
$(0.009)^{\frac{1}{3}}$
5. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(0.0999)^{\frac{1}{10}}$

D View Text Solution

6. Using differentials, find the approximate
value of each of the up to 3 places of decimal.
$(15)^{\frac{1}{4}}$
7. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(26)^{\frac{1}{3}}$

D Watch Video Solution

8. Using differentials, find the approximate
value of each of the up to 3 places of decimal.
$(255)^{\frac{1}{4}}$

9. Find the approximate value of $\sqrt{82}$

D Watch Video Solution

10. Using differentials, find the approximate
value of each of the up to 3 places of decimal.
$(401)^{\frac{1}{2}}$

- Watch Video Solution

11. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(0.0037)^{\frac{1}{2}}$

D Watch Video Solution

12. Using differentials, find the approximate
value of each of the up to 3 places of decimal.
$(26.57)^{\frac{1}{3}}$
13. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(81.5)^{\frac{1}{4}}$

D Watch Video Solution

14. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(3.968)^{\frac{3}{2}}$
15. Using differentials, find the approximate value of each of the up to 3 places of decimal. $(32.15)^{\frac{1}{5}}$

D Watch Video Solution

16. Find the approximate value of $f(2.01)$, where $f(x)=4 x^{2}+5 x+2$.

D Watch Video Solution
17. Find the approximate value of $f(5.001)$, where $f(x)=x^{3}-7 x^{2}+15$.

D Watch Video Solution

18. Find the approximate change in the volume
V of a cube of side x metres caused by
increasing the side by 1%.

D Watch Video Solution
19. Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%.

D Watch Video Solution

20. If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume

- Watch Video Solution

21. If the radius of a sphere is measured as 9 m

 with an error of 0.03 m , then find the approximate error in calculating its surface area.
D Watch Video Solution

22. If $f(x)=3 x^{2}+15 x+5$, then the approximate
value of $f(3.02)$ is
A. 47.66
B. 57.66

C. 67.66

D. 77.66

Answer: D

D Watch Video Solution

23. The approximate change in the volume of a
cube of side x metres caused by increasing the
side by 3% is
A. $0.06 x^{3} \mathrm{~m}$
B. $0.6 x^{3} m^{3}$
C. $0.09 x^{3} m^{3}$
D. $0.9 x^{3} m^{3}$

Answer: C

- Watch Video Solution

Exercise 65

1. Find the maximum and minimum values, if any, of the functions given by
$f(x)=(2 x-1)^{2}+3$

D Watch Video Solution

2. Find the maximum and minimum values, if any, of the functions given by $f(x)=9 x^{2}+12 x+2$

D Watch Video Solution

3. Find the maximum and minimum values, if any, of the functions given by
$f(x)=-(x-1)^{2}+10$

- Watch Video Solution

4. Find the maximum and minimum values, if any, of the functions given by

$$
g(x)=x^{3}+1
$$

D Watch Video Solution

5. Find the maximum and minimum values, if any, of the functions given by
$f(x)=|x+2|-1$

D Watch Video Solution

6. Find the maximum and minimum values, if any, of the functions given by $g(x)=-|x+1|+3$

- Watch Video Solution

7. Find the maximum and minimum values, if any, of the functions given by
$h(x)=\sin (2 x)+5$

- Watch Video Solution

8. Find the maximum and minimum values, if any, of the functions given by

$$
f(x)=|\sin 4 x+3|
$$

D Watch Video Solution

9. Find the maximum and minimum values, if
any, of the functions given by
$h(x)=x+1, x \in(-1,1)$

D Watch Video Solution

10. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as
the case may be:
$f(x)=x^{2}$

D Watch Video Solution
11. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:
$\mathrm{g}(\mathrm{x})=x^{3}-3 x$

D Watch Video Solution

12. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as
the case may be:
$\mathrm{h}(\mathrm{x})=\sin \mathrm{x}+\cos \mathrm{x}, 0<x<\frac{\pi}{2}$

D Watch Video Solution

13. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:

$$
f(x)=\sin x-\cos x, 0<x<2 \pi
$$

D Watch Video Solution

14. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:
$\mathrm{f}(\mathrm{x})=x^{3}-6 x^{2}+9 x+15$

- Watch Video Solution

15. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as
the case may be:
$\mathrm{g}(\mathrm{x})=\frac{x}{2}+\frac{2}{x} x>0$

D Watch Video Solution

16. Find the local maxima and local minima, if any, of the functions. Find also the local maximum and the local minimum values, as the case may be:
$g(x)=\frac{1}{x^{2}+2}$
17. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: $f(x)=x \sqrt{1-x}$

D Watch Video Solution

18. Prove that the functions do not have maxima or minima:
$\mathrm{f}(\mathrm{x})=e^{x}$
19. Prove that the functions do not have maxima or minima:
$g(x)=\log x$

- Watch Video Solution

20. Prove that the functions do not have maxima or minima:
$\mathrm{h}(\mathrm{x})=x^{3}+x^{2}+x+1$
21. Find the absolute maximum value and the absolute minimum value of the functions in the given intervals:
$\mathrm{f}(\mathrm{x})=x^{3}, x \in[-2,2]$

D Watch Video Solution

22. Find the absolute maximum value and the
absolute minimum value of the functions in
the given intervals:
$\mathrm{f}(\mathrm{x})=\sin \mathrm{x}+\cos \mathrm{x}, x \in[0, \pi]$
23. Find the absolute maximum value and the absolute minimum value of the functions in the given intervals:
$\mathrm{f}(\mathrm{x})=4 \mathrm{x}-\frac{1}{2} x^{2}, x \in\left[-2, \frac{9}{2}\right]$

- Watch Video Solution

24. Find the absolute maximum value and the absolute minimum value of the functions in
the given intervals:
$\mathrm{f}(\mathrm{x})=(x-1)^{2}+3, x \in[-3,1]$

D Watch Video Solution
25. Find the maximum profit that a company
can make, if the profit function is given by $p(x)$
$=41-24 x-18 x^{2}$

D Watch Video Solution
26. Find both the maximum value and the minimum value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval $[0,3]$.

D Watch Video Solution

27. At what points in the interval [$0,2 \pi$], does
the function $\sin 2 x$ attain its maximum value?

D Watch Video Solution
28. What is the maximum value of the function
$\sin x+\cos x ?$

D Watch Video Solution
29. Find the product of monomials
$2 z^{2}, 10 x^{2} y z, 9 x^{2}$
(D) Watch Video Solution
30. It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value, on the interval $[0,20]$. Find the value of a.

D Watch Video Solution

31. Find the maximum and minimum values of $x+\sin 2 x$ on $[0,2 \pi]$.

D Watch Video Solution

32. Find two numbers whose sum is 24 and whose product is as large as possible.

D Watch Video Solution

33. Find the positive integers x and y such that
$x+y=60$ and $x y^{3}$ is maximum.

- Watch Video Solution

34. Find two positive numbers x and y such
that their sum is 35 and the product $x^{2} y^{5}$ is a maximum.

D Watch Video Solution

35. Find two positive integers whose sum is 16 and the sum of squares is minimum.

D Watch Video Solution

36. A square sheet of tin whose side is 18 cm to
be made into a box without top by cutting off
squares from each comer and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum ?

D Watch Video Solution

37. A rectangular sheet of tin $45 \mathrm{~cm} \times 24 \mathrm{~cm}$ is
to be made into a box without top, by cutting
off square from each corner and folding up
the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible.

D Watch Video Solution

38. Show that of all rectangles inscribed in a given circle the square has maximum area.

D Watch Video Solution

39. Find the product of following monomials
$10 a^{2} b^{2}, 3 a^{3}, 5 b^{3}$

- Watch Video Solution

40. If all the closed cylindrical cans (right circular), which enclose a given volume of 100 cubic centimeters. Find the dimensions of the can which has the minimum surface area.
41. A wire of length 28 m is to be cut into two
pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

D View Text Solution

42. Prove that volume of largest cone, which
can be inscribed in a sphere, is $\left(\frac{8}{27}\right)^{t h}$ part of volume of sphere.
43. Show that the right circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ time the radius of the base.

- Watch Video Solution

44. Show that semi-vertical angle of right circular cone of given surface area and
maximum volume is $\sin ^{-1}\left(\frac{1}{3}\right)$.

- Watch Video Solution

45. The point on the curve $x^{2}=2 y$ which is
closest to the point $(0,5)$ is
A. $(2 \sqrt{2}, 4)$
B. $(2 \sqrt{2}, 0)$
C. $(0,0)$
D. $(2,2)$

Answer: A

- Watch Video Solution

46. For all real values of x, the minimum value
of $\frac{1-x+x^{2}}{1+x+x^{2}}$ is
A. 0
B. 1
C. 3
D. $\frac{1}{3}$

Answer: D

D Watch Video Solution

47. If $f(x)=|x-1|+|x-2|+|x-3|$
when $2<x<3$ is
A. $\left(\frac{1}{3}\right)^{\frac{1}{3}}$
B. $\frac{1}{2}$
C. 1
D. 0

Answer: C

- Watch Video Solution

Exercise 66

1. Using differentials, find the approximate
value of each of the following:
(a) $\left(\frac{17}{81}\right)^{\frac{1}{4}}$ (b) $(33)^{-\frac{1}{5}}$

D View Text Solution

2. Show that the function given by $\mathrm{f}(\mathrm{x})=\frac{\log x}{x}$ has maximum at $x=e$.

D Watch Video Solution

3. The two equal sides of an isoceles triangle with fixed base b are decreasing at the rate of
$3 \mathrm{~cm} / \mathrm{s}$. How fast is the tea decreasing when the two equal to the base?
4. The equation of the normal to the curve $x^{2}=4 y$ at $(1,2)$ is

D Watch Video Solution

5. Show that the normal at any point θ to the

curve

$x=a \cos \theta+a \theta \sin \theta, y=a \sin \theta-a \theta \cos \theta$
is at a constant distance from the origin.

- Watch Video Solution

6. Find the intervals in which the function f
given by
$f(x)=\frac{4 \sin x-2 x-x \cos x}{2+\cos x}$
is (i) increasing (ii) decreasing.

D View Text Solution

7. Find the intervals in which the function f
given by $\mathrm{f}(\mathrm{x})=x^{3}+\frac{1}{x^{3}}, x \neq 0$ is
(i) increasing (ii) decreasing .
8. Find the maximum area of an isosceles
triangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with its vertex at one end of the major axis.

D Watch Video Solution

9. A tank with rectangular base and rectangular side, open at the top is to be constructed so that its depth is $2 m$ and volume is $8 m^{3}$. If building of tank costs Rs. 70 per sq metres for the base and Rs. 45 per
square metre for sides. What is the cost of least expensive tank ?

D Watch Video Solution

10. The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.
11. A window is in the form of a rectangle surmounted by a semi-circular opening. The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum light through the whole opening.

D Watch Video Solution

12. Find the points at which the function f given by $f(x)=(x-2)^{4}(x+1)^{3}$ has
(i) local maxima (ii) local minima (iii) point of inflexion
13. Find the absolute maximum and minimum
values of the function f given by
$f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]$

- Watch Video Solution

14. Let f be a function defined on $[a, b]$ such
that $f^{\prime}(x)>0$ for all $x \in(a, b)$. Then prove that f is an increasing function on (a, b).

Watch Video Solution

15. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $2 \frac{R}{\sqrt{3}}$. Also find the maximum volume.

- Watch Video Solution

16. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi
vertical angle α is one-third that of the cone and the greatest volume of cylinder is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$

D Watch Video Solution

17. A cylindrical tank of radius 10 m is being
filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of:
A. $1 \mathrm{~m} / \mathrm{h}$
B. $0.1 \mathrm{~m} / \mathrm{h}$
C. $0.1 \mathrm{~m} / \mathrm{h}$
D. $0.5 \mathrm{~m} / \mathrm{h}$

Answer: A

D Watch Video Solution

18. The slope of the tangent to the curve
$x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at \quad the
point $(2,-1)$ is:
A. $\frac{22}{7}$
B. $\frac{6}{7}$
C. $\frac{7}{6}$
D. $\frac{-6}{7}$

Answer: B

- Watch Video Solution

19. The line $y=m x+1$ is a tangent to the curve
$y^{2}=4 x$ if the value of m is
A. 1
B. 2
C. 3
D. $\frac{1}{2}$

Answer: A

D Watch Video Solution

20. The normal at the point $(1,1)$ on the curve
$2 y+x^{2}=3^{\prime}$ is
A. $x+y=0$
B. $x-y=0$
C. $x+y+1=0$
D. $x+y=1$

Answer: B

D Watch Video Solution

21. The equation of the normal to the curve
$x^{2}=4 y$ at $(1,2)$ is
A. $x+y=3$
B. $x-y=3$
C. $x+y=1$
D. $x-y=1$

Answer: A

D Watch Video Solution

22. The points on the curve $9 y^{2}=x^{3}$, where
the normal to the curve makes equal intercepts with the axes are:
A. $\left(4, \pm \frac{8}{3}\right)$
B. $\left(4, \frac{-8}{3}\right)$
C. $\left(4, \pm \frac{3}{8}\right)$
D. $\left(\pm 4, \frac{3}{8}\right)$

Answer: A

- Watch Video Solution

