

MATHS

NCERT - NCERT MATHEMATICS(TELUGU)

APPLICATION OF INTEGRALS

1. The area bounded by the circle $x^2+y^2=a^2$

and the line x + y = a in the first quadrant is

2. Show that the area of the region bounded by

 $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ (ellipse) is π ab. Also deduce the

area of the circle $x^2+y^2=a^2$

3. Find the area of the region bounded by

$$y=x^2$$
 and y = 4

4. Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$.

Watch Video Solution

5. Find the area of the region BOB'RESB is enclosed

by the ellipse and the lines x = 0 and x = ae.

6. Find the area of the region bounded by the two

parabolas
$$y = x^2$$
 and $y^2 = x$.

Watch Video Solution

7. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and inside in the parabola $y^2 = 4x$.

8. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2, 2), and (3, 1).

9. Find the area of the region enclosed between the two circle $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 4$.

10. Find the area of the parabola $y^2 = 4ax$ bounded by its latus rectum. Watch Video Solution **11.** Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -1 and x =

1.

12. Find the area bounded by the curve $y = \cos x$

between x = 0 and $x=2\pi$

> Watch Video Solution

13. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by the lines

x = 0, x = 4, y = 4 and y = 0 into three equal parts.

1. Find the area of the region bounded by the curve

 $y_2 = x$ and the lines x = 1, x = 4 and the x-axis in

the first quadrant.

2. Find the area of the region bounded by $y^2 = 9x, x = 2, x = 4$ and the x-axis in the first quadrant.

3. Find the area of the region bounded by $x^2 = 4y, y = 2, y = 4$ and the y-axis in the first quadrant.

4. Find the area of the region bounded by the

ellipse
$$rac{x^2}{16}+rac{y^2}{9}=1.$$

Watch Video Solution

5. Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$. Watch Video Solution

6. Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the circle

$$r^{2} + y^{2} = 4.$$

Watch Video Solution
7. Find the area of the smaller part of the circle
 $x^{2} + y^{2} = a^{2}$ cut off by the line $x = \frac{a}{\sqrt{2}}.$
Watch Video Solution

8. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x= a, find the value of a. **9.** Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.

View Text Solution

10. Find the area bounded by the curve $x^2 = 4y$

and the line x = 4y - 2.

11. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.

View Text Solution

12. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

A. π

B.
$$\frac{\pi}{2}$$

C. $\frac{\pi}{3}$

Answer: A

View Text Solution

13. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

O

B.
$$\frac{9}{4}$$

C. $\frac{9}{3}$
D. $\frac{9}{2}$

Exercise 8 2

1. Find the area of the circle $4x^2 + 4y^2 = 9$ which

is interior to the parabola $x^2 = 4y$.

View Text Solution

2. Find the area bounded by curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$.

3. The area of the region bounded by the curves

$$y = x^2 + 2, y = x, x = 0$$
 and $x = 3$ is

Watch Video Solution

4. Using integiation find the area of region bounded by the triangle whose vertices are (-1,0),

region whose sides have the equations y =2x+1, y

=3x +1 and x= 4.

6. Smaller area enclosed by the circle $x^2 + y^2 = 4$

and the line x + y = 2 is

A.
$$2(\pi-2)$$

 $\mathsf{B.}\,\pi-2$

 $\mathsf{C.}\,2\pi-1$

D. $2(\pi + 2)$

Answer: B

7. Area lying between the curves $y^2=4x$ and y = 2x

is

A.
$$\frac{2}{3}$$

B.
$$\frac{1}{3}$$

C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

View Text Solution

Miscellaneous Exercise

1. Find the area under the given curves and given lines:

(i) $y=x_2, x=1, x=2$ and x-axis

(ii) $y = x^4, x = 1, x = 5$ and x-axis

View Text Solution

2. Find the area between the curves y = x and $y = x^2$.

3. Find the area of the region lying in the first quadrant and bounded by $y = 4x^{2}$, x = 0, y = 1 and y = 4.

5. The area of the region bounded by the curve

 $y=\sin x,\,\,$ x-axis in $[0,2\pi]$ is

6. Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx. View Text Solution

7. Find the area enclosed by the parabola $4y=3x^2$

and the line 2y = 3x + 12.

View Text Solution

8. Find the area of the smaller region bounded by the ellipse $rac{x^2}{9}+rac{y^2}{4}=1$ and the line $rac{x}{3}+rac{y}{2}=1$

View Text Solution

9. Find the area of the smaller region bounded by the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ and the line $rac{x}{a}+rac{y}{b}=1$

View Text Solution

10. Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and the x-axis.

View Text Solution

11. Using the method of integration find the area bounded by the curve |x|+|y|= 1. [Hint: The required region is bounded by lines x + y = 1, x - y = 1, -x + y = 1 and -x - y = 1].

View Text Solution

12. Find the area bounded by curves $ig\{(x,y)\!:\!y\geq x^2 ext{and} y=|x|ig\}.$

View Text Solution

13. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

14. Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x - 2y =

6 and x - 3y + 5 = 0

16. Area bounded by the curve v=x, the x-axis and

the ordinates x = -2 and x = 1 is

B.
$$-\frac{15}{4}$$

C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer: D

17. The area bounded by the curve $y = x^3$, x-axis and the ordinates: x = - 1 and x= 1 is given by

A. 0
B.
$$\frac{1}{3}$$

C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: C

18. The area of the circle $x^2 + y^2 = 16$ exterior to the parabola y = 6x is

A.
$$\frac{4}{3}(4\pi - \sqrt{3})$$

B. $\frac{4}{3}(4\pi + \sqrt{3})$
C. $\frac{4}{3}(8\pi - \sqrt{3})$
D. $\frac{4}{3}(8\pi + \sqrt{3})$

Answer: C

19. The are a bounded by the y-axis, y = cos x and y

sin x when $0 \leq x \leq rac{\pi}{2}$ is

A.
$$2ig(\sqrt{2-1}ig)$$

- $\mathrm{B.}\,\sqrt{2}-1$
- $\mathsf{C}.\sqrt{2}+1$
- D. $\sqrt{2}$

Answer: B

