đず doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS(TELUGU)

APPLICATION OF INTEGRALS

Example

1. The area bounded by the circle $x^{2}+y^{2}=a^{2}$ and the line $x+y=a$ in the first quadrant is
(Watch Video Solution
2. Show that the area of the region bounded by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (ellipse) is π ab. Also deduce the area of the circle $x^{2}+y^{2}=a^{2}$

- Watch Video Solution

3. Find the area of the region bounded by
$y=x^{2}$ and $\mathrm{y}=4$

- Watch Video Solution

4. Find the area of the region in the first quadrant enclosed by the x-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$.

- Watch Video Solution

5. Find the area of the region BOB'RESB is enclosed by the ellipse and the lines $x=0$ and $x=a e$.
6. Find the area of the region bounded by the two parabolas $y=x^{2}$ and $y^{2}=x$.

- Watch Video Solution

7. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and inside in the parabola $y^{2}=4 x$.
8. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), $(2,2)$, and (3, 1).

- Watch Video Solution

9. Find the area of the region enclosed between the two circle $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.
10. Find the area of the parabola $y^{2}=4 a x$ bounded by its latus rectum.

D Watch Video Solution

11. Find the area of the region bounded by the line
$y=3 x+2$, the x-axis and the ordinates $x=-1$ and $x=$
12.

- Watch Video Solution

12. Find the area bounded by the curve $y=\cos x$ between $\mathrm{x}=0$ and $x=2 \pi$

D Watch Video Solution

13. Prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$
divide the area of the square bounded by the lines
$x=0, x=4, y=4$ and $y=0$ into three equal parts.

- Watch Video Solution

14. Find the area of the region
$\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$

- Watch Video Solution

Exercise 81

1. Find the area of the region bounded by the curve
$y_{2}=x$ and the lines $\mathrm{x}=1, \mathrm{x}=4$ and the x -axis in
the first quadrant.
2. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

D Watch Video Solution

3. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.
4. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

- Watch Video Solution

5. Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

- Watch Video Solution

6. Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle
$r^{2}+y^{2}=4$.

- Watch Video Solution

7. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

- Watch Video Solution

8. The area between $x=y^{2}$ and $\mathrm{x}=4$ is divided into two equal parts by the line $x=a$, find the value of a.
9. Find the area of the region bounded by the parabola $y=x^{2}$ and $\mathrm{y}=|\mathrm{x}|$.

- View Text Solution

10. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.
11. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $\mathrm{x}=3$.

- View Text Solution

12. Area lying in the first quadrant and bounded by
the circle $x^{2}+y^{2}=4$ and the lines $\mathrm{x}=0$ and $\mathrm{x}=2$
is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: A

- View Text Solution

13. Area of the region bounded by the curve
$y^{2}=4 x, y$-axis and the line $\mathrm{y}=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

- View Text Solution

Exercise 82

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.
2. Find the area bounded by curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

D View Text Solution

3. The area of the region bounded by the curves

$$
y=x^{2}+2, y=x, x=0 \text { and } x=3 \text { is }
$$

- Watch Video Solution

4. Using integiation find the area of region bounded by the triangle whose vertices are ($-1,0$),
$(1,3)$ and $(3,2)$.

- View Text Solution

5. Using integration find the area of the triangular region whose sides have the equations $y=2 x+1, y$ $=3 x+1$ and $x=4$.

D View Text Solution

6. Smaller area enclosed by the circle $x^{2}+y^{2}=4$
and the line $x+y=2$ is
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer: B

D View Text Solution
7. Area lying between the curves $y^{2}=4 x$ and $\mathrm{y}=2 \mathrm{x}$ is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer: B

- View Text Solution

Miscellaneous Exercise

1. Find the area under the given curves and given
lines:
(i) $y=x_{2}, x=1, x=2$ and x-axis
(ii) $y=x^{4}, x=1, x=5$ and x-axis

- View Text Solution

2. Find the area between the curves $y=x$ and $y=x^{2}$.

D View Text Solution

3. Find the area of the region lying in the first quadrant and bounded by $\mathrm{y}=4 \mathrm{x}^{\wedge}(2), \mathrm{x}=0, \mathrm{y}=1$ and $\mathrm{y}=4$.
4. Sketch the graph of $y=|3|$ and evaluate $\int_{-6}^{0}|x+3| \mathrm{dx}$.

D View Text Solution
5. The area of the region bounded by the curve
$y=\sin x, x$-axis in $[0,2 \pi]$ is

- Watch Video Solution

6. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $\mathrm{y}=\mathrm{mx}$.

D View Text Solution

7. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

D View Text Solution

8. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

- View Text Solution

9. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

D View Text Solution

10. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $\mathrm{y}=\mathrm{x}+2$ and the x -axis.
11. Using the method of integration find the area bounded by the curve $|x|+|y|=1$. [Hint: The required region is bounded by lines $x+y=1, x-y=1,-x+y=$ 1 and $-x-y=1$.

D View Text Solution

12. Find the area bounded by curves
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$.

D View Text Solution

13. Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$.

- View Text Solution

14. Using the method of integration find the area of the region bounded by lines: $2 x+y=4,3 x-2 y=$ 6 and $x-3 y+5=0$
15. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

- View Text Solution

16. Area bounded by the curve $v=x$, the x-axis and the ordinates $x=-2$ and $x=1$ is
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

D View Text Solution

17. The area bounded by the curve $y=x^{3}$, x -axis and the ordinates: $x=-1$ and $x=1$ is given by
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$
18. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y=6 x$ is

$$
\begin{aligned}
& \text { A. } \frac{4}{3}(4 \pi-\sqrt{3}) \\
& \text { B. } \frac{4}{3}(4 \pi+\sqrt{3}) \\
& \text { C. } \frac{4}{3}(8 \pi-\sqrt{3}) \\
& \text { D. } \frac{4}{3}(8 \pi+\sqrt{3})
\end{aligned}
$$

Answer: C
19. The are a bounded by the y-axis, $y=\cos x$ and y
$\sin \mathrm{x}$ when $0 \leq x \leq \frac{\pi}{2}$ is
A. $2(\sqrt{2-1})$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

