©゙"doubtnut

MATHS

NCERT - NCERT MATHEMATICS(TELUGU)

MATRICES

Example

1. Consider the following information regarding the number of
men and women workers in three factories I, II and III

	Men workers	Women workers
I	30	25
$I I$	25	31
$I I I$	27	26

Represent the above information in the form of a 3×2 matrix.
What does the entry in the third row and second column
represent?

- Watch Video Solution

2. If a matrix has 8 elements, what are the possible orders it can have?

- Watch Video Solution

3. Construct a 3×2 matrix whose elements are defined by $a_{i j}=\frac{1}{2}|i-3 j|$

- Watch Video Solution

4. If $\left[\begin{array}{ccc}x+3 & z+4 & 2 y-7 \\ -6 & a-1 & 0 \\ b-3 & -21 & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 6 & 3 y-2 \\ -6 & -3 & 2 c+2 \\ 2 b+4 & -21 & 0\end{array}\right]$

Find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ and z .
5. Find the values of a, b, c and d from the following equation:

$$
\left[\begin{array}{cc}
2 a+b & a-2 b \\
5 c-d & 4 c+3 d
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
11 & 24
\end{array}\right]
$$

D Watch Video Solution

6. Given $A=\left[\begin{array}{ccc}\sqrt{3} & 1 & -1 \\ 2 & 3 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & \sqrt{5} & 1 \\ -2 & 3 & \frac{1}{2}\end{array}\right]$, find $A+B$

- Watch Video Solution

7. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & -1 & 3 \\ -1 & 0 & 2\end{array}\right]$, then find $2 A-B$.
8. If $A=\left[\begin{array}{cc}8 & 0 \\ 4 & -2 \\ 3 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & -2 \\ 4 & 2 \\ -5 & 1\end{array}\right]$, then find the matrix

X, such that $2 A+3 X=5 B$.

D Watch Video Solution

9. Find X and Y if, $X+Y=\left[\begin{array}{ll}5 & 2 \\ 0 & 9\end{array}\right]$ and $X-Y=\left[\begin{array}{cc}3 & 6 \\ 0 & -1\end{array}\right]$.

D Watch Video Solution

10. Find the value of x and y from the following equation:
$2\left[\begin{array}{cc}x & 5 \\ 7 & y-3\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$

- Watch Video Solution

11. Two farmers Ramkishan and Gurcharan Singh cultivates only three varieties of rice namely Basmati, Permal and Naura. The sale (in Rupees) of these varieties of rice by both the farmers in the month of September and October are given by the following matrices A and B .

Septermber Sales (in Rupees)
Basmati Permal Naura
$A=\left[\begin{array}{lll}10,000 & 20,000 & 30,000 \\ 50,000 & 30,000 & 10,000\end{array}\right] \begin{aligned} & \text { Ramkishan } \\ & \text { Gurcharan singh }\end{aligned}$
October Sales (in Rupees)
$B=\left[\begin{array}{ccc}\text { Basmati } & \text { Permal } & \text { Naura } \\ 5,000 & 10,000 & 6000 \\ 20,000 & 10,000 & 10,000\end{array}\right] \begin{aligned} & \text { Ramkishan } \\ & \text { Gurcharan singh }\end{aligned}$
(i) Find the combined sales in September and October for each farmer in each variety.
(ii) Find the decrease in sales from September to October.
(iii) If both farmers receive 2% profit on gross sales, compute the
profit for each farmer and for each variety sold in October.

- Watch Video Solution

12. Find AB , if $A=\left[\begin{array}{ll}6 & 9 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 6 & 0 \\ 7 & 9 & 8\end{array}\right]$.

- Watch Video Solution

13. If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$, then find $A B$, $B A$.

Show that $A B \neq B A$.

- Watch Video Solution

14. If $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Find AB and BA . Prove that $A B \neq B A$.

- Watch Video Solution

15. Find AB , if $A=\left[\begin{array}{cc}0 & -1 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 5 \\ 0 & 0\end{array}\right]$.

- Watch Video Solution

16.

If
$A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ 0 & 2 \\ -1 & 4\end{array}\right]$ and $C=\left[\begin{array}{cccc}1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1\end{array}\right]$
, find $\mathrm{A}(\mathrm{BC}),(\mathrm{AB}) \mathrm{C}$ and show that $(A B) C=A(B C)$.

- Watch Video Solution

17. If $A=\left[\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right], C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$

Calculate $\mathrm{AC}, \quad \mathrm{BC}$ and $(A+B) C$. Also, verify that $(A+B) C=A C+B C$

- Watch Video Solution

18. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$, then show that $A^{3}-23 A-40 I=0$

- Watch Video Solution

19. In a legislative assembly election, a political group hired a public relations firm to promote its candidate in three ways: telephone, house calls, and letters. The cost per contact (in paise) is given in matrix A as
$A=\left[\begin{array}{c}\text { cost per contact } \\ 100 \\ 50\end{array}\right] \begin{aligned} & \text { Telephone } \\ & \text { Housecall } \\ & \text { Letter }\end{aligned}$
The number of contacts of each type made in two cities X and Y is
given by $\left.B=\begin{array}{ccc}\text { Telephone } & \text { Housecall Letter } \\ 1000 & 500 & 5000 \\ 3000 & 1000 & 10,000\end{array}\right] \rightarrow X . \begin{aligned} & \rightarrow \text {. Find the total }\end{aligned}$ amount spent by the group in the two cities X and Y .
20. If $A=\left[\begin{array}{ccc}3 & \sqrt{3} & 2 \\ 4 & 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & -1 & 2 \\ 1 & 2 & 4\end{array}\right]$, verify that
(i) $\left(A^{\prime}\right)^{\prime}=A$,
(ii) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$,
(iii) $(k B)^{\prime}=k B^{\prime}$, where k is any constant.

- Watch Video Solution

21. If $A=\left[\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right], B=\left[\begin{array}{lll}1 & 3 & -6\end{array}\right]$, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$.

D Watch Video Solution

22. Express the matrix $B=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
23. By using elementary operations, find the inverse of the matrix
$A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.

- Watch Video Solution

24. Obtain the inverse of the following matrix using elementary
operations $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$

D View Text Solution

25. Find P^{-1}, if the exists, given $P=\left[\begin{array}{cc}10 & -2 \\ -5 & 1\end{array}\right]$
26. IF $A=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then show that for all the positive integers, $A^{n}=\left[\begin{array}{ll}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$

- Watch Video Solution

27. If A and B are symmetric matrices of the same order, then show that $A B$ is symmetric if and only if A and B commute, that is $A B=B A$.

- Watch Video Solution

Exercise 31

1. In the matrix $A=\left[\begin{array}{cccc}2 & 5 & 19 & -7 \\ 35 & -2 & \frac{5}{2} & 12 \\ \sqrt{3} & 1 & -5 & 17\end{array}\right]$, write:
(i) The order of the matrix,
(ii) The number of elements,
(iii) Write the elements $a_{13}, a_{21}, a_{33}, a_{24}, a_{23}$.

- Watch Video Solution

2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

- Watch Video Solution

3. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

- Watch Video Solution

4. Construct a 2×2 matrix, $A=\left[a_{i j}\right]$, whose elements are given by:
(i) $a_{i j}=\frac{(i+j)^{2}}{2}$
(ii) $a_{i j}=\frac{i}{j}$
(iii) $a_{i j}=\frac{(i+2 j)^{2}}{2}$

D Watch Video Solution

5. Construct a 3×4 matrix, whose elements are given by:
(i) $a_{i j}=\frac{1}{2}|-3 i+j|$
(ii) $a_{i j}=2 i-j$
6. Find the value of x, y and z from the following equations:
(i) $\left[\begin{array}{ll}4 & 3 \\ x & 5\end{array}\right]=\left[\begin{array}{ll}y & z \\ 1 & 5\end{array}\right]$
(ii) $\left[\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$
(iii) $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$

D View Text Solution

7. Find the value of a, b, c and d from the equation:
$\left[\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right]=\left[\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right]$

- Watch Video Solution

8. $A=\left[a_{i j}\right]_{m \times n}$ is a square matrix, if
B. $m>n$
C. $m=n$
D. None of these

Answer: C

- Watch Video Solution

9. Which of the given values of x and y make the following pair of matrices equal

$$
\left[\begin{array}{cc}
3 x+7 & 5 \\
y+1 & 2-3 x
\end{array}\right]=\left[\begin{array}{cc}
0 & y-2 \\
8 & 4
\end{array}\right]
$$

A. $x=\frac{-1}{3}, y=7$
B. Not possible to find
C. $y=7, x=\frac{-2}{3}$
D. $x=\frac{-1}{3}, y=\frac{-2}{3}$

Answer: B

- Watch Video Solution

10. The number of all possible matrices of order 3×3 with each entry 0 or 1 is :
A. 27
B. 18
C. 81
D. 512

Answer: D

- Watch Video Solution

1. Let $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right], C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$

Find each of the following:
$(i) A+B(i i) A-B(i i i) 3 A-C(i v) A B(v) B A$

- Watch Video Solution

2. Compute the following:
$\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]+\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$
(ii) $\left[\begin{array}{ll}a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2}\end{array}\right]+\left[\begin{array}{cc}2 a b & 2 b c \\ -2 a c & -2 a b\end{array}\right]$
(iii) $\left[\begin{array}{ccc}-1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5\end{array}\right]+\left[\begin{array}{ccc}12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4\end{array}\right]$
(iv) $\left[\begin{array}{ll}\cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x\end{array}\right]+\left[\begin{array}{ll}\sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x\end{array}\right]$
3. Compute the indicated products:
(i) $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
(ii) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$
(iii) $\left[\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$
(iv) $\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{ccc}1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5\end{array}\right]$
(v) $\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right]$
(vi) $\left[\begin{array}{ccc}3 & -1 & 3 \\ -1 & 0 & 2\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 1 & 0 \\ 3 & 1\end{array}\right]$

(D) Watch Video Solution

4.

$A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$
, then compute $(A+B)$ and $(B-C)$. Also, verify that $A+(B-C)=(A+B)-C$.

- Watch Video Solution

5. If $A=\left[\begin{array}{ccc}\frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3}\end{array}\right]$ and $B=\left[\begin{array}{ccc}\frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5}\end{array}\right]$, then compute $3 A-5 B$.

- Watch Video Solution

6. Simplify $\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$

- Watch Video Solution

7. Find X and Y, if

(i) $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
(ii) $2 X+3 Y=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$ and $3 X+2 Y=\left[\begin{array}{cc}2 & -2 \\ -1 & 5\end{array}\right]$

- Watch Video Solution

8. Find X, if $Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ and $2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$

D Watch Video Solution

9. Find x and y, if $2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

- Watch Video Solution

10. Solve the equation for x, y, z and t, if
$2\left[\begin{array}{ll}x & y \\ y & t\end{array}\right]+3\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]=3\left[\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right]$

- Watch Video Solution

11. If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$, find the value of x and y.

- Watch Video Solution

12. Given $3\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$, find the values of x, y, z and w.
13. If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, show that
$F(x) F(y)=F(x+y)$.

- Watch Video Solution

14. Show that
(i) $\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right] \neq\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]$
(ii) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right] \neq\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$

- Watch Video Solution

15. Find $A^{2}-5 A+6 I$, if $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$
16. If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$, prove that $A^{3}-6 A^{2}+7 A+2 I=0$

- Watch Video Solution

17. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, find k so that $A^{2}=k A-2 I$

- Watch Video Solution

18. If $A=\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$ and I is the identity matrix of order 2, show that $I+A=(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
19. A trust fund has to invest Rs 30,000 in two different types of bonds. The first bond pays 5\% interest per year, and the second bond pays 7\% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds, if the trust fund must obtain an annual total interest of (a) Rs. 1800 (b) Rs. 2000.

- Watch Video Solution

20. A certain bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs80,Rs60 and Rs,40 each respectively. Find the total amount the bookshop will receive by selling all the books, using matrix algebra.

- Watch Video Solution

21. Assume $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ and P are matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $p \times k$, respectively.

The restriction on n, k and p so that $P Y+W Y$ will be defined are:
A. $k=3, p=n$
B. k is arbitrary, $p=2$
C. p is arbitrary, $k=3$
D. $k=2, p=3$

Answer: A

- Watch Video Solution

22. Assume $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ and P are matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $p \times k$, respectively.

If $\mathrm{n}=\mathrm{p}$, then the order of the matrix $7 X-5 Z$ is:
A. $p \times 2$
B. $2 \times n$
C. $n \times 3$
D. $p \times n$

Answer: B

D Watch Video Solution

Exercise 33

1. Find the transpose of each of the following matrices:
$(i)\left[\begin{array}{c}5 \\ \frac{1}{2} \\ -1\end{array}\right](i i)\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right](i i i)\left[\begin{array}{ccc}-1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1\end{array}\right]$
2. If $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right]$, then verify that
(i) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$,
(ii) $(A-B)^{\prime}=A^{\prime}-B^{\prime}$

- Watch Video Solution

3. If $A^{\prime}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$, then verify that
(i) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$,
(ii) $(A-B)^{\prime}=A^{\prime}-B^{\prime}$

- Watch Video Solution

4. If $A^{\prime}=\left[\begin{array}{cc}-2 & 3 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]$ then find $(A+2 B)^{\prime}$,
5. For the matrices A and B , verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$, where
(i) $A=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right], B=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right](i i) A=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], B=\left[\begin{array}{lll}1 & 5 & 7\end{array}\right]$

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then verify that $A^{\prime} A=I$

- Watch Video Solution

7. If $A=\left[\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right]$, then verify that $A^{\prime} A=I$

- Watch Video Solution

8. Show that the matrix $A=\left[\begin{array}{ccc}1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3\end{array}\right]$ is a symmetric matrix.

- Watch Video Solution

9. Show that the matrix $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$ is a skew symmetric matrix.

D Watch Video Solution

10. For the matrix $A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]$, verify that
(i) $\left(A+A^{\prime}\right)$ is a symmetric matrix
(ii) $\left(A-A^{\prime}\right)$ is a skew symmetric matrix
11. Find $\frac{1}{2}\left(A+A^{\prime}\right)$ and $\frac{1}{2}\left(A-A^{\prime}\right)$, when
$A=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$

(D) Watch Video Solution

12. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
(i) $[(3,5),(1,-1)]$

- Watch Video Solution

13. Suppose A and B are two square matrices of same order. If A, B are symmetric matrices, then $A B-B A$ is
A. Skew symmetric matrix
B. Symmetric matrix
C. Zero matrix
D. Identity matrix

Answer: A

- Watch Video Solution

14. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, and $A+A^{\prime}=I$, then the value of α is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{3 \pi}{2}$

Answer: B

- Watch Video Solution

Exercise 34

1. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$

D Watch Video Solution

2. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
3. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$

- Watch Video Solution

4. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$

- Watch Video Solution

5. Using elementary transformations, find the inverse of the matrices

$$
\left[\begin{array}{cc}
6 & -3 \\
-2 & 1
\end{array}\right]
$$

(D) Watch Video Solution

6. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$

- Watch Video Solution

7. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$

- Watch Video Solution

8. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right]$

- Watch Video Solution

9. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{cc}3 & 10 \\ 2 & 7\end{array}\right]$

- Watch Video Solution

10. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]$
11. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right]$

- Watch Video Solution

12. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right]$

- Watch Video Solution

13. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$

(D) Watch Video Solution

14. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$

- Watch Video Solution

15. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$

D View Text Solution
16. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ccc}1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0\end{array}\right]$

D View Text Solution

17. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$

D View Text Solution

18. Matrices A and B will be inverse of each other only if
A. $A B=B A$
B. $A B=B A=0$
C. $A B=0, B A=1$
D. $A B=B A=1$

Answer: D

- Watch Video Solution

Miscellaneous Exercise On Chapter 3

1. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, show that $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$, where I is the identity matrix of order 2 and $n \in N$.

(D) Watch Video Solution

3. IF $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ then show that $A^{n}=\left[\begin{array}{ll}1+2 n & -4 n \\ n & 1-2 n\end{array}\right]$, for any integer $n \geq 1$.

- Watch Video Solution

4. If A and B are symmetric matrices, prove that $A B-B A$ is a skew symmetric matrix.
5. Show that the matrix $B^{\prime} A B$ is symmetric or skew symmetric according as A is symmetric or skew symmetric.

- Watch Video Solution

6. Find the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ if the matrix $A=\left[\begin{array}{ccc}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]$ satisfy the equation $A^{\prime} A=I$.

- Watch Video Solution

7. For what values of $x:\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}2 \\ x\end{array}\right]=O$?
8. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=0$.

- Watch Video Solution

9. Find x , if $\left[\begin{array}{lll}x & -5 & -1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ 4 \\ 1\end{array}\right]=O$

- Watch Video Solution

10. A manufacturer produces three products x, y, z which he sells in two markets. Annual sales are indicated below:
Market Products

I	10,000	2,000	18,000
$I I$	6,000	20,000	8,000

(a) If unit sale prices of x, y and z are Rs. 2.50 , Rs. 1.50 and Rs. 1.00 ,
respectively, find the total revenue in each market with the help of matrix algebra.
(b) If the unit costs of the above three commodities are Rs. 2.00, Rs. 1.00 and 50 paise respectively. Find the gross profit.

- Watch Video Solution

11. Find the matrix X so that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$

D Watch Video Solution

12. If A and B are square matrices of the same order such that $A B$
$=\mathrm{BA}$, then prove by induction that $A B^{n}=B^{n} A$. Further, prove that $(A B)^{n}=A^{n} B^{n}$ for all $n \in N$.

- Watch Video Solution

13. If $A=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is such that $A^{2}=I$, then
A. $I+\alpha^{2}+\beta \gamma=0$
B. $I-\alpha^{2}+\beta \gamma=0$
C. $I-\alpha^{2}-\beta \gamma=0$
D. $I+\alpha^{2}-\beta \gamma=0$

Answer: C

- Watch Video Solution

14. If the matrix A is both symmetric and skew suymmetric, then
A. A is a diagonal matrix
B. A is a zero matrix
C. A is a square matrix
D. None of these

Answer: B

D View Text Solution

15. If A is square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to
A. A
B. $I-A$
C. I
D. 3A

Answer: C

- Watch Video Solution

