

MATHS

NCERT - NCERT MATHEMATICS(TELUGU)

VECTOR ALGEBRA

Example

1. Represent graphically a displacement of 40 km , $30^{\,\circ}$ west of

south .

2. Classify the following measures as scalars and vectors.

- (i) 5 seconds
- (ii) $1000 cm^3$
- (iii) 10 Newton
- (iv) 30km/hr
- (v) $10g/cm^3$
- (vi) 20m/s towards north

Watch Video Solution

3. Find the values of x,y and z so that the vectors $\overrightarrow{a} = x\hat{i} + 2\hat{j} + z\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + y\hat{j} + \hat{k}$ are equal .

4. Let $\overrightarrow{a} = \hat{i} + 2\hat{j}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j}$. Is $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$? Are the vectors \overrightarrow{a} and \overrightarrow{b} equal?

Watch Video Solution

5. Find unit vector in the direction of vector $ar{a}=ig(2ar{i}+3ar{j}+ar{k}ig)$

6. Find a vector in the direction of vector $ar{a}=ar{i}-2ar{j}$ has magnitude 7 units.

7. Find the unit vector in the direction of the sum of the vectors

$$ar{a}=2ar{i}+2ar{j}-5ar{k} ext{ and } ar{b}=2ar{i}+ar{j}+3ar{k}.$$

Watch Video Solution

8. Write direction ratios of the vector $ar{r}=ar{i}+ar{j}-2ar{k}$ and

hence calculate its direction cosines.

9. Find the vector joining the points P(2,3,0) and Q(-1,-2,-4) directed from P to Q.

10. Consider two points P and Q with position vectors $\overline{OP} = 3\overline{a} - 2\overline{b}$ and $\overline{OQ} = \overline{a} + \overline{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio 2:1 (i) internally.

magnitudes 1 and 2 respectively and when $\overrightarrow{a}\cdot\overrightarrow{b}=1.$

٦

14. If
$$\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$, then show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - b$ are perpendicular.

Watch Video Solution

15. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2k$ on the

vector
$$\stackrel{\longrightarrow}{b}=\hat{i}+2\hat{j}+\hat{k}.$$

16. Find
$$\left|\overrightarrow{a} - \overrightarrow{b}\right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 4$.

17. If
$$\overrightarrow{a}$$
 is a unit vector and $(\overrightarrow{x} - \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 8$, then find $|\overrightarrow{x}|$.

18. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , we always have $\left|\overrightarrow{a} \cdot \overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right|$ (Cauchy- Schwartz inequality).

19. Show that the points
$$A\Big(-2\hat{i}+3\hat{j}+5\hat{k}\Big), B\Big(\hat{i}+2\hat{j}+3\hat{k}\Big) ext{ and } C\Big(7\hat{i}-\hat{k}\Big)$$
 are

collinear.

20. Find
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|$$
, if $\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$

Watch Video Solution

21. Find a unit vector perpendicular to each of the vector
$$\left(\overrightarrow{a} + \overrightarrow{b}\right)$$
 and $\left(\overrightarrow{a} - \overrightarrow{b}\right)$, where $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$

Watch Video Solution

22. Find the area of atriangle having the points A(1,1,1), B (1,2,3)

and C(2,3,1) as its vertices.

23. Find the area of a parallelogram whose adjacent sides are

given by the vectors $\overrightarrow{a}=3\hat{i}+\hat{j}+4\hat{k}\,\, ext{and}\,\,\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$

Watch Video Solution

24. Write all the unit vectors in XY - plane.

25. If $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ are position vectors of points A,B,C and D respectively, then find the angle between \overrightarrow{AB} and \overrightarrow{CD} . Deduce that \overrightarrow{AB} and \overrightarrow{CD} are collinear.

Watch Video Solution

26. Let $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} be three vectors such that $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = 4, \left|\overrightarrow{c}\right| = 5$ and each one of them being perpendicular to the sum of the other two , find $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$.

27. Three vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} satisfy the condition $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$. Evaluate the quantity $\mu = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$, if $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{c}\right| = 2$.

Watch Video Solution

Exercise 101

1. Represent graphically a displacement of 40 km , $30^{\,\circ}$ east of

north.

2. Classify the following measures as scalars and vectors .

(i) 10 kg

(ii) 2 meters north

(iii) 40°

(iv) 40 watt

(v) 10^{19} coulomb

(vi) $20m/s^2$

> Watch Video Solution

3. Classify the following as scalar and vector quantities.

(i) time period

(ii) distance

(iii) force

(iv) velocity

(v) work done

- 4. In Fig 10.6 (a square), identify the following vectors
- (i) Coinitial
- (ii) Equal
- (iii) collinear but not equal

5. Answer the followings true or false.

- (i) \overrightarrow{a} and $-\overrightarrow{a}$ are collinear.
- (ii) Two collinear vectors are always equal in magnitude.
- (iii) Two vectors having same magnitude are collinear.
- (iv) Two collinear vectors having the same magnitude are equal.

1. Compute the magnitude of the following vectors :

$$\overrightarrow{a}=\hat{i}+\hat{j}+k, \, \overrightarrow{b}=2\hat{i}-7\hat{j}-3\hat{k}, \, \overrightarrow{c}=rac{1}{\sqrt{3}}\hat{i}+rac{1}{\sqrt{3}}\hat{j}-rac{1}{\sqrt{3}}\hat{k}$$

2. Write two different vectors having same magnitude.

Watch Video Solution
3. Write two different vectors having same direction. • Watch Video Solution
4. Find the values of x and y so that the vectors
$2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ are equal.

5. Find the scalar and vector components of the vector with initial point (2,1) and terminal point (-5,7).

7. Find the unit vector in the direction of the vector $ec{a}=\hat{i}+\hat{j}+2\hat{k}.$

8. Find the unit vector in the direction of vector \overrightarrow{PQ} , where P and Q are the points (1,2,3) and (4,5,6), respectively.

9. For given vectors

$$\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$$
 and $\vec{b} = -\hat{i} + \hat{j} - \hat{k}$, find the unit
vector in the direction of the vector $\vec{a} + \vec{b}$.

10. Find a vector in the direction of vector $5\hat{i} - \hat{j} + 2\hat{k}$ which

has magnitude 8 units.

11. Show that the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $-4\hat{i} + 6\hat{j} - 8\hat{k}$

are collinear.

14. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the

axes OX, OY and OZ.

15. Find the position vector of a point R which divides the line joing two points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ repectively, in the ratio 2:1 (i) nternally

(ii) externally

16. Find the position vector of the mid point of the vector joining the points P(2,3,4) and Q(4,1,-2).

17. Show that the points A,B and C with position vectors , $\overrightarrow{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}, \overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} - 3\hat{j} = 5\hat{k}$

,respectively form the vertices of a right angled triangle.

18. In triangle ABC (Fig 10.18), which of the following is not true

A. $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ B. $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$ C. $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$ D. $\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \overrightarrow{0}$

:

Answer: C

19. If \overrightarrow{a} and \overrightarrow{b} are two collinear vectors , then which of the following are incorrect :

A.
$$\stackrel{
ightarrow}{b}=\lambda\stackrel{
ightarrow}{a}$$
 , for some scalar λ

$$\mathsf{B}.\,\overrightarrow{a}\,=\,\pm\,\overrightarrow{b}$$

C. the respective components of \overrightarrow{a} and \overrightarrow{b} are not proportional

D. both the vectors \overrightarrow{a} and \overrightarrow{b} have same direction , but different magnitudes.

Answer: B::C::D

3. Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$.

4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector

 $7\hat{i}-\hat{j}+8\hat{k}.$

Watch Video Solution

5. Show that each of the given three vectors is a unit vector. $\frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right), \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right)$ Also , show that they are mutually perpendicular to each other.

6. Find
$$\left|\overrightarrow{a}\right|$$
 and $\left|\overrightarrow{b}\right|$, if $\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\left(\overrightarrow{a}-\overrightarrow{b}\right)=8$ and $\left|\overrightarrow{a}\right|=8\left|\overrightarrow{b}\right|$.

7. Evaluate the product
$$\left(3\overrightarrow{a}-5\overrightarrow{b}\right)\cdot\left(2\overrightarrow{a}+7\overrightarrow{b}\right)$$
.

8. Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

Watch Video Solution

9. Find
$$\left|\overrightarrow{x}\right|$$
, if for a unit vector $\overrightarrow{a}, \left(\overrightarrow{x} - \overrightarrow{a}\right) \cdot \left(\overrightarrow{x} + \overrightarrow{a}\right) = 12.$

10.

$$\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}, \ \overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k} \ \text{and} \ \overrightarrow{c} = 3\hat{i} + \hat{j}$$

are such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then find the value of λ .

11. Show that
$$\left| \overrightarrow{a} \right| \overrightarrow{b} + \left| \overrightarrow{b} \right| \overrightarrow{a}$$
 is perpendicular to $\left| \overrightarrow{a} \right| \overrightarrow{b} - \left| \overrightarrow{b} \right| \overrightarrow{a}$, for any two nonzero vectors \overrightarrow{a} and \overrightarrow{b} .

O Watch Video Solution

12. If
$$\overrightarrow{a} \cdot \overrightarrow{a} = 0$$
 and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, then what can be concluded about the vector \overrightarrow{b} ?

If

13. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, find the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$.

Watch Video Solution

14. If either vector $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$, then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$. But the converse need not be true. Justify your answer with an example.

Watch Video Solution

15. If either vector A,B,C of a triangle ABC are (1,2,3),(-1,0,0),

(0,1,2), respectively , then find $\angle ABC$. [$\angle ABC$ is the angle

17. Show that the vectors $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}-5\hat{k}\,\, ext{and}\,\,3\hat{i}-4\hat{k}$ form the vertices of a

right angled triangle.

18. If \overrightarrow{a} is a nonzero vector of mangitude 'a' and λ a nonzero scalar , then $\lambda \overrightarrow{a}$ is unit vector if

A.
$$\lambda=1$$

$$\mathsf{B}.\,\lambda=\,-\,1$$

$$\mathsf{C}.\,a=|\lambda|$$

D.
$$a=1/|\lambda|$$

Answer: D

Watch Video Solution

Exercise 10 4

1. Find
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|$$
, if $\overrightarrow{a} = \hat{i} - 7\hat{i} + 7\hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 2\hat{i} + 2\hat{k}$

2. Find a unit vector perpendicular to each of the vector $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Watch Video Solution

3. If a unit vector \overrightarrow{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence, the components of \overrightarrow{a} .

4. Show that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) imes \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} imes \overrightarrow{b}\right)$$

5. Find
$$\lambda$$
 and μ if $\left(2\hat{i}+6\hat{j}+27\hat{k}\right) imes\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right)=\stackrel{
ightarrow}{0}$.

Watch Video Solution

6. Given that $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$. What can you conclude about the vectors \overrightarrow{a} and \overrightarrow{b} ?

Watch Video Solution

7. Let the vectors $\overrightarrow{a}, \overrightarrow{b} \overrightarrow{c}$ be given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, b_1\hat{i} + b_2\hat{j} + b_3\hat{k}c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then show

that
$$\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$$

8. If either
$$\overrightarrow{a}=\overrightarrow{0}$$
 or $\overrightarrow{b}=\overrightarrow{0}$, then $\overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{0}$. Is the

converse true ? Justify your answer with an example.

View Text Solution

9. Find the area of the tirangle with vertices A (1,1,2),B (2,3,5) and C(1,5,5).

10. Find the area the parallelogram whose adjacent sides are

$$egin{array}{ccc} {
m determined} & {
m by} & {
m the} & {
m vectors} \ \overrightarrow{a} &= \hat{i} - \hat{j} + 3 \hat{k} \, \, {
m and} \, \, \overrightarrow{b} &= 2 \hat{i} - 7 \hat{j} + \hat{k}. \end{array}$$

Watch Video Solution

11. Let the vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} be such that $\left|\overrightarrow{a}\right| = 3$ and $\left|\overrightarrow{b}\right| = \frac{\sqrt{2}}{3}$, then $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, if the angle between \overrightarrow{a} and \overrightarrow{b} is

A. $\pi/6$

B. $\pi/4$

C. $\pi/3$

D. $\pi/2$

Answer: B

Watch Video Solution

12. Area of a rectangle having vertices A,B C and D with position vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$ and $-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$, respectively is

A.
$$\frac{1}{2}$$

B. 1
C. 2

D. 4

Answer: C

View Text Solution

1. Write down a unit vector in XY-plane, making an angle of 30°

with the positive direction of x-axis.

Watch Video Solution

2. Find the scalar components and magnitude of the vector joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$.

Watch Video Solution

3. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

4. If
$$\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$$
, then is it true that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| + \left|\overrightarrow{c}\right|$?

Justify your answer.

Watch Video Solution

5. Find the value of x for which $x \left(\hat{i} + \hat{j} + \hat{k}
ight)$ is a unit vector.

Watch Video Solution

6. Find a vector of magnitude 5 units and parallel to the

resultant of the vectors
$$\overrightarrow{a}=2\hat{i}+3\hat{j}-\hat{k} ext{ and }\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}.$$

7. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{j} - \hat{j} + 3\hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} + \hat{k}$,
find a unit vector parallel to the vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$.

9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\left(2\overrightarrow{a}+\overrightarrow{b}\right)$ and $\left(\overrightarrow{a}-3\overrightarrow{b}\right)$ externally in the ratio 1:2 Also

, show that P is the mid point of the line segment RQ.

10. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5k$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal Also , find its area.

Watch Video Solution

11. Show that the direction cosines of a vector equally inclined

to the axes OX,OY and OZ are
$$\pm\left(rac{1}{\sqrt{3}},rac{1}{\sqrt{3}},rac{1}{\sqrt{3}}
ight)$$
.

12. Let

$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \ \overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k} \ \text{and} \ \overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$$

Find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} , and $\overrightarrow{c} \cdot \overrightarrow{d} = 15$.

Watch Video Solution

13. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one . Find the value of λ .

Watch Video Solution

14. If θ is the angle between two vectors \overrightarrow{a} and \overrightarrow{b} then $\overrightarrow{a} \cdot \overrightarrow{b} \ge 0$ only when

A.
$$0 < heta < rac{\pi}{2}$$

B.
$$0 \leq heta \leq rac{\pi}{2}$$

C. $0 < heta < \pi$
D. $0 \leq heta \leq \pi$

Answer: B

15. Let \overrightarrow{a} and \overrightarrow{b} be two unit vectors and θ is the angle between them Then $\overrightarrow{a} + \overrightarrow{b}$ is a unit vector if

A.
$$heta = rac{\pi}{4}$$

B. $heta = rac{\pi}{3}$
C. $heta = rac{\pi}{2}$
D. $heta = rac{2\pi}{3}$

Answer: D

Watch Video Solution

16. The value of
$$\hat{i}.\left(\hat{j} imes\hat{k}
ight)+\hat{j}\cdot\left(\hat{i} imes\hat{k}
ight)+\hat{k}\cdot\left(\hat{i} imes\hat{j}
ight)$$
 is

A. 0

- $\mathsf{B.}-1$
- C. 1

D. 3

Answer: C

17. If θ is the angle between any two vectors \overrightarrow{a} and \overrightarrow{b} , then $\left|\overrightarrow{a} \cdot \overrightarrow{b}\right| = \left|\overrightarrow{a} \times \overrightarrow{b}\right|$ when θ is equal to

B.
$$\frac{\pi}{4}$$

C. $\frac{\pi}{2}$

D.
$$\pi$$

Answer: B

