đず doubtnut

India's Number 1 Education App

PHYSICS

NCERT - NCERT Physics(Telugu)

GRAVITATION

Example

1. What is the time period of satellite near the
earth's surface? (neglect height of the orbit of

satellite from the surface of the earth)?

- View Text Solution

2. A body is projected vertically up. What is the distance covered in its last second of upward
motion? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

D View Text Solution

3. Two bodies fall freely from different heights and reach the ground simultaneously. The time of descent for the first body is $t_{1}=2 s$
and for the second $t_{2}=1 \mathrm{~s}$. At what height
was the first body situated when the other
began to fall? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

D View Text Solution

4. A stone is thrown vertically up from the tower of height 25 m with a speed of $20 \mathrm{~m} / \mathrm{s}$

What time does it take to reach the ground ?

$\left(g=10 m / s^{2}\right)$

- View Text Solution

5. Find the time taken, by the body projected
vertically up with a speed of u, to return back to the ground.

D View Text Solution

6. What is the time period of satellite near the earth's surface? (neglect height of the orbit of
satellite from the surface of the earth)?

tin

- View Text Solution

7. A body is projected vertically up. What is the distance covered in its last second of upward
motion? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

D View Text Solution

8. Two bodies fall freely from different heights
and reach the ground simultaneously. The
time of descent for the first body is $t_{1}=2 s$
and for the second $t_{2}=1 \mathrm{~s}$. At what height
was the first body situated when the other
began to fall? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

- View Text Solution

9. A stone is thrown vertically up from the tower of height 25 m with a speed of $20 \mathrm{~m} / \mathrm{s}$.

What time does it take to reach the ground? (

$$
\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

D View Text Solution
10. Find the time taken, by the body projected
vertically up with a speed of u, to return back to the ground.

D View Text Solution

11. What is the time period of satellite near the earth surface neglect height of the orbit of

satellite from the surface of ground?

(D) View Text Solution
12. A body is projected vertically up. What is
the distance covered in its last second of upward motion? $\left(g=10 m / s^{2}\right)$

D View Text Solution

13. Two bodies fall freely from different heights
and reach the ground simultaneously. The
time of descent for the first body is $t_{1}=2 s$
and for the second $\mathrm{t} t_{2}=1 \mathrm{~s}$. At what height
was the first body situated when the other
began to fall? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

- View Text Solution

14. A stone is thrown vertically up from the tower of height 25 m with a speed of $20 \mathrm{~m} / \mathrm{s}$.

What time does it take to reach the ground?
$\left(g=10 m / s^{2}\right)$

View Text Solution
15. Find the time taken, by the body projected
vertically up with a speed of u, to return back to the ground.

D View Text Solution

Let Us Improve Our Learning Application Of

 Concepts1. A car moves with constant speed of $10 \mathrm{~m} / \mathrm{s}$
in a circular path of radius 10 m . The mass of
the car is 1000 kg . How much is the required centripetal force for the car?

D View Text Solution

2. What is the speed of an apple dropped from
a tree after 1.5 second? What distance will it cover during this time? Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
$\left(A S_{1}\right)$
3. A ball is projected vertically up with a speed of $50 \mathrm{~m} / \mathrm{s}$. Find the maximum height, the time to reach the maximum height, and the speed at the maximum height $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\left(A S_{1}\right)$

D View Text Solution

4. Two spherical balls of mass 10 kg each are placed with their centers 10 cm apart. Find the gravitational force of attraction between them. $\left(A S_{1}\right)$
5. Find the free-fall acceleration of an object on the surface of the moon, if the radius of the moon and its mass are 1740 km and $7.4 \times 10^{22} \mathrm{~kg}$ respectively. Compare this value with free fall acceleration of a body on the surface of the earth. $\left(A S_{1}\right)$

D View Text Solution

6. A ball is dropped from a height. If it takes
0.2 s to cross the last 6 m before hitting the ground, find the height from which it is dropped. Take $g=10 \frac{m}{/} s^{2}\left(A S_{1}\right)$

- View Text Solution

7. The bob of a simple pendulum of length 1 m has mass 100 g and a speed of $1.4 \mathrm{~m} / \mathrm{s}$ at the lowest point in its path. Find the tension in
the string at this moment. Take $g=9.8 m / \sec ^{2}\left(A S_{1}\right)$

- View Text Solution

8. A car moves with constant speed of $10 \mathrm{~m} / \mathrm{s}$
in a circular path of radius 10 m . The mass of
the car is 1000 kg . How much is the required centripetal force for the car? $A S_{1}$
9. What is the speed of an apple dropped from
a tree after 1.5 second? What distance will it cover during this time? Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ $A S_{1}$

- View Text Solution

10. A ball is projected vertically up with a speed of $50 \mathrm{~m} / \mathrm{s}$. Find the maximum height, the time to reach the maximum height, and
the speed at the maximum height ($\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right) A S_{1}$

- View Text Solution

11. Two spherical balls of mass 10 kg each are placed with their centers 10 cm apart. Find the gravitational force of attraction between them. $A S_{1}$
12. Find the free-fall acceleration of an object on the surface of the moon, if the radius of the moon and its mass are 1740 km and $7.4 \times 10^{22} \mathrm{~kg}$ respectively. Compare this value with free fall acceleration of a body on the surface of the earth. $A S_{1}$

D View Text Solution

13. A ball is dropped from a height. If it takes
0.2 s to cross the last 6 m before hitting the
ground, find the height from which it is dropped. Take $g=10 \mathrm{~m} / \mathrm{s}^{2} A S_{1}$

D View Text Solution

14. The bob of a simple pendulum of length 1 m has mass 100 g and a speed of $1.4 \mathrm{~m} / \mathrm{s}$ at the lowest point in its path. Find the tension in the string at this moment. Take $g=9.8 \mathrm{~m} / \sec ^{2} A S_{1}$
15. A car moves with constant speed of $10 \mathrm{~m} / \mathrm{s}$ in a circular path of radius 10 m . The mass of
the car is 1000 kg . Who or what is providing the required centripetal force for the car? How much is it?

D View Text Solution
2. A small metal washer is placed on the top of
a hemisphere of radius R. What minimum
horizontal velocity should be imparted to the washer to detach it from the hemisphere at the initial point of motion? (See figure) $\left(A S_{1}, A S_{7}\right)$

D View Text Solution

3. What is the speed of an apple dropped from
a tree after 1.5 second? What distance will it
cover during $g=10 m / s^{2}\left(A S_{1}\right)$ this time? Take

D View Text Solution

4. A body is projected with a speed of $40 \mathrm{~m} / \mathrm{s}$
vertically up from the ground. What is the maximum height reached by the body? What is the entire time of motion? What is the velocity at 5 seconds after the projection? Take

$$
g=10 m / s^{2}\left(A S_{1}\right)
$$

5. A boy is throwing balls into the air one by one in such a way that when the first ball thrown reaches maximum height he starts to throw the second ball. He repeats this activity. To what height do the balls rise if he throws twice in a second? $\left(A S_{1} . A S_{7}\right)$
A. $1 / 4 \mathrm{~m}$
B.
C.
D.

Answer: 1/4m

D View Text Solution

6. A ball is dropped from a height. If it takes
0.2 s to cross the last 6 m before hitting the ground, find the height from which it is dropped. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}(A S 1)$
A. 54.45 m
B.
C.
D.

Answer: 54.45m

D View Text Solution

7. A ball is dropped from a balloon going up at a speed of $5 \mathrm{~m} / \mathrm{s}$. If the balloon was at a height 60 m . at the time of dropping the ball, how long will the ball take to reach the ground? $\left(A S_{1}, A S_{7}\right)$
A. 4 s
B.
C.
D.

Answer: 4s

D View Text Solution

8. A ball is projected vertically up with a speed of $50 \mathrm{~m} / \mathrm{s}$. Find the maximum height, the time to reach the maximum height, and the speed at the maximum height $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\left(A S_{1}\right)$

- View Text Solution

9. Two cars having masses m_{1} and m_{2} move
in circles of radii r_{1} and r_{2} respectively. If they complete the circle in equal time. What is the ratio of their speeds and centripetal accelerations? $\left(A S_{1}\right)$

View Text Solution

10. Two spherical balls of mass 10 kg each are placed with their centers 10 cm apart. Find the gravitational force of attraction between
them. $\left(A S_{1}\right)$
A. $10^{4} G$
B.
C.
D.

Answer: $10^{4} G$
11. Find the free-fall acceleration of an object on the surface of the moon, if the radius of the moon and its mass are

1740 km and $7.4 \times 10^{22} \mathrm{~kg}$ respectively.

Compare this value with free fall acceleration of a body on the surface of the earth. $\left(A S_{1}\right)$
12. A scooter weighing 150 kg together with its
rider moving at $36 \mathrm{~km} / \mathrm{hr}$ is to take a turn of
radius 30 m . What force on the scooter towards the center is needed to make the turn possible? Who or what provides this? $\left(A S_{1}\right)$
A. 500 N
B.
C.
D.
13. The bob of a simple pendulum of length 1
m has mass 100 g and a speed of $1.4 \mathrm{~m} / \mathrm{s}$ at the
lowest point in its path. Find the tension in
the string at this moment. $\left(A S_{1}\right)$
A. 1.076 N
B.
C.
D.

Answer: 1.076N

- View Text Solution

