©゙’doubtnut

India's Number 1 Education App

PHYSICS

NCERT - NCERT Physics(Telugu)

MOTION

Example

1. A car is moving with the accelaration $2 \mathrm{~m} / \mathrm{s}^{2}$
from rest. Find the distance traveled by the car
in 10th second.

- Watch Video Solution

2. A car is moving with the initial velocity 15 m / s. Car stoped after 5 s by application of breaks. Find the retardation (Decelaration).

- Watch Video Solution

3. A bus is moving with the initial velocity of ' u ' m / s. After applying the breaks, its retardation is $0.5 \mathrm{~m} / \mathrm{s}^{2}$ and it stoped after 12 s . Find the
initial velocity (u) and distance travel by the bus after applying the breaks.

D Watch Video Solution

4. At a distance $L=400 \mathrm{~m}$ away from the signal
light,brakes are applied to a locomotive moving with a velocity, $\mathrm{u}=54 \mathrm{~km} / \mathrm{h}$. Determine
the position of rest of the locomotive relative to the signal light after 1 min of the application of the brakes if its acceleration $\mathrm{a}=$
$-0.3 \mathrm{~m} / \mathrm{s}^{2}$
5. What is the speed of the body moving with uniform acceleration at the midpoint of two points on a straight line, where the speeds are u and v respectively ?

- Watch Video Solution

6. A car travels from rest with a constant acceleration "a" for "t" seconds. What is the
average speed of the car for its journey if the car moves along a straight road?

D Watch Video Solution

7. A particle moving with constant acceleration
of $2 m / s^{2}$ due west has an initial velocity of
$9 \mathrm{~m} / \mathrm{s}$ due east. Find the distance covered in
the fifth second of its motion.

- Watch Video Solution

8. A man standing under a street lamp of height ' H ' above the ground starts running with a constant speed ' v ' in a constant direction. The light from the lamp falling on the man form a shadow of him. Find the velocity with which the edge of the shadow of the man's head moves over the ground if his height is " h ".

D View Text Solution

9. At a distance $\mathrm{L}=400 \mathrm{~m}$ away from the signal
light,brakes are applied to a locomotive moving at a velocity $\mathrm{u}=54 \mathrm{~km} / \mathrm{h}$.Determine the position of the locomotive relative to the signal light after 1 min of the application of the brakes if its acceleration $\mathrm{a}=-0.3 \mathrm{~m} / \mathrm{s}^{2}$

- View Text Solution

10. What is the speed of the body moving with
uniform accelerated motion at midpoint of
two points on the straight line, where the speeds are u and v respectively?

D View Text Solution

11. A car travels from rest with a constant acceleration "a" for " t " seconds. What is the average speed of the car for its journey if the car moves along a straight road?
12. A particle moving with constant acceleration of $2 \mathrm{~m} / s^{2}$ due west has an initial
velocity of $9 \mathrm{~m} / \mathrm{s}$ due east. Find the distance covered in the fifth second of its motion.

D View Text Solution

Let Us Improve Our Learning Reflections On

Concepts

1. Distinguish between speed and velocity.
2. How can you say that a body is in motion? Is
it a common property? $\left(A S_{1}\right)$

D Watch Video Solution

3. How do you measure instantaneous speed?

D Watch Video Solution

4. Explain acceleration with an example ?
$\left(A S_{1}\right)$

D Watch Video Solution
5. What do you mean by acceleration ? $\left(A S_{1}\right)$

D Watch Video Solution

Let Us Improve Our Learning Application Of Concepts

1. Draw the distance - time graph when its speed decreases uniformly. $\left(A S_{5}\right)$

D Watch Video Solution

2. What is the average speed of a Cheetah that
sprints 100 m in 4 sec ? What if it sprints 50 m
in 2 sec ?

D Watch Video Solution
3. A car travels at a speed of $80 \mathrm{~km} / \mathrm{h}$ during
the first half of its running time and at 40 km / h during the other half. Find the average speed of the car. (60 km/h)

D Watch Video Solution

4. A particle covers 10 m in first 5 sec and 10 m
in next 3 sec . Assuming constant acceleration,
find initial speed, acceleration and distance covered in next 2 sec.

Let Us Improve Our Learning Higher Order Thinking Questions

1. When the velocity is constant, can the average velocity over any time interval differ
from instantaneous velocity at any instant ? If so, give an example, If not, explain why.
2. You may have heard the story of the race between the rabbit and tortoise. They started
from same point simultaneously with constant speeds. During the journey, rabbit took rest somewhere along the way for a while. But tortoise moves steadily with lesser speed and reaches finishing point before rabbit. Rabbit woke up and ran, but rabbit realized that the tortoise had won the race. Draw distance vs time graph for this story.
3. A man is 48 m behind a bus which is at rest.

The bus starts accelerating at the rate of
$1 m / s^{2}$, at the same time the man starts running with uniform velocity of $10 \mathrm{~m} / \mathrm{s}$. What
is the minimum time in which the man catches
the bus?

- Watch Video Solution

Let Us Improve Our Learning Multiple Choice

Question

1. The distance travelled by an object in a specified direction is
A. Speed
B. Displacement
C. Velocity

D. Acceleration

Answer:

D Watch Video Solution
2. If an object is moving with constant velocity then the motion is
A. Motion with Non uniform acceleration
B. Motion with Uniform Acceleration
C. Uniform Motion
D. Non uniform Motion

Answer:

D Watch Video Solution
3. If there is change in the velocity of the object then the state of object with respect to motion is
A. State of Constant Speed
B. State of Constant velocity
C. State of Uniform Motion
D. State of Non uniform Motion

Answer:

D Watch Video Solution
4. If the acceleration of a moving object is constant then the motion is said to be
A. Motion with Constant Speed
B. Motion with Uniform Acceleration
C. Motion with Uniform Velocity

D. Motion with Non Uniform acceleration

Answer:

D Watch Video Solution

Let Us Improve Our Learning Suggested Experiments

1. Do an experiment to understand the changes in weight of reactants and products
in a chemical reaction, write a report.
(D) Watch Video Solution

Think And Discuss

1. What is the displacement of the body if it returns to same point from where it started ?

Given on example from daily life.

- Watch Video Solution

2. When do the distance and magnitude of displacement become equal ?

- Watch Video Solution

3. What is the average speed of the car if covers 200km in 5 h ?

- Watch Video Solution

4. When does the average velocity become zero ?
5. A man used his car. The initial and final odometer readings are 4849 and 5549 respectively. The journey time is 25 h . What is his average spped during the journey?

- Watch Video Solution

6. The speedometer of the car indicates a constant reading. Is the car in uniform motion ? Explain.
7. Very often you must have seen traffic police catching motorists and scooter drivers who drive fast and fine them. Does fine for speeding depend on average speed or instantaneous speed ? Explain.

- Watch Video Solution

8. One airplane travels due north at $300 \mathrm{~km} / \mathrm{h}$ and another airplane travels due south at 300
km / h. Are their speeds the same ? Are their velocities the same ? Explain.

D Watch Video Solution

9. An ant is moving on the surface of a ball. Does its velocity change or not ? Explain.

D Watch Video Solution

10. Give an example of motion where there is a
change only in speed but no change in
direction of motion.

- Watch Video Solution

11. What is the acceleration of the race car that moves at constant velocity of $300 \mathrm{~km} / \mathrm{h}$?

- Watch Video Solution

12. Which has the greater acceleration, an airplane, that goes from $1000 \mathrm{~km} / \mathrm{h}$ to 1005
km / h in 10 s or a skateboard that goes from zero to $5 \mathrm{~km} / \mathrm{h}$ in 1 second?

D Watch Video Solution

13. What is the deceleration of a vehicle moving in a straight line that changes its velocity from $100 \mathrm{~km} / \mathrm{h}$ to a dead stop in 10 sec ?

D Watch Video Solution

14. Correct your friend who says "Acceleration gives an idea of how fast the position changes."

- Watch Video Solution

Examples

1. A car is moving with the accelaration $2 \mathrm{~m} / \mathrm{s}^{2}$
from test. Find the distance traveled by the car in 10th second.
2. A car is moving with the initial velocity 15 m / s. Car stoped after 5 s by application of breaks. Find the retardation (Decelaration).

D View Text Solution

3. A bus is moving with the initial velocity of ' u ' m / s. After applying the breaks, its retardation is $0.5 \mathrm{~m} / \mathrm{s}^{2}$ and it stoped after 12 s . Find the
initial velocity (u) and distance travel by the bus after applying the breaks.

D View Text Solution

4. At a distance $\mathrm{L}=400 \mathrm{~m}$ away from the signal
light,brakes are applied to a locomotive moving with a velocity, $\mathrm{u}=54 \mathrm{~km} / \mathrm{h}$. Determine
the position of rest of the locomotive relative to the signal light after 1 min of the application of the brakes if its acceleration $\mathrm{a}=$ $-0.3 m / s^{2}$
5. What is the speed of the body moving with uniform acceleration at the midpoint of two points on a straight line, where the speeds are u and v respectively?

- View Text Solution

6. A car travels from rest with a constant acceleration 'a' for 't' seconds. What is the
average speed of the car for its journey if the car moves along a straight road?

D View Text Solution

7. A particle moving with constant acceleration of $2 m / s^{2}$ due west has an initial velocity of 9 m / s due east. Find the distance covered in the fifth second of its motion.

D View Text Solution

Let Us Improve Our Learning Application Of Concepts

1. A body leaving a certain point " O " moves
with a constant acceleration. At the end of the
5 th second its velocity is $1.5 \mathrm{~m} / \mathrm{s}$. At the end of
the sixth second the body stops and then begins to move backwards. Find the distance traversed by the body before it stops.

Determine the velocity with which the body
returns to point " O"?

D View Text Solution
2. A train of length 50 m is moving with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. Calculate the time
taken by the train to cross an electric pole and
a bridge of length 250 m .

D View Text Solution

3. A particle covers 10 m in first 5 s and 10 m in next 3s. Assuming constant acceleration. Find initial speed, acceleration and distance covered in next 2s.

D View Text Solution

1. A car covers half the distance at a speed of $50 \mathrm{~km} / \mathrm{h}$ and the other half at $40 \mathrm{~km} / \mathrm{h}$. Find the average speed of the car.

D View Text Solution

2. Derive the equation for uniform accelerated motion for the displacement covered in its nth second of its motion.)
3. A particle covers 10 m in first 5 s and 10 m in next 3s. Assuming constant acceleration. Find initial speed, acceleration and distance covered in next 2 s .

- View Text Solution

4. A car starts from rest and travels with
uniform acceleration " α " for some time and
then with uniform retardation " β " and comes
to rest. The time of motion is " t ". Find the maximum velocity attained by it.

D View Text Solution

5. A body leaving a certain point " O " moves
with an a constant acceleration. At the end of
the 5 th second its velocity is $1.5 \mathrm{~m} / \mathrm{s}$. At the end of the sixth second the body stops and then begins to move backwards. Find the distance traversed by the body before it stops.

Determine the velocity with which the body returns to point " O" ?

D View Text Solution

6. A point mass starts moving in a straight line with constant acceleration "a". At a time t after
the beginning of motion, the acceleration
changes sign, without change in magnitude.

Determine the time t_{0} from the beginning of
the motion in which the point mass returns to
the initial position.
7. A train of length 50 m is moving with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. Calculate the time taken by the train to cross an electric pole and a bridge of length 250 m .

- View Text Solution

8. Two trains, each having a speed of $30 \mathrm{~km} / \mathrm{h}$, are headed at each other on the same track. A bird flies off one train to another with a
constant speed of $60 \mathrm{~km} / \mathrm{h}$ when they are 60km apart till before they crash. Find the distance covered by the bird and how many trips the bird can make from one train to other before they crash?

- View Text Solution

