

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

POLYNOMIAL

1. Draw the graph of the polynomial $f(x) = 2x^2 - 4x + 5.$

reciprocals of the zero of the polynomial $f(x) = ax^2 + bx + c, a
eq 0, c
eq 0.$

4. If α and β are the zeros of the quadratic				
polynomial $f($	$(x) = x^2 -$	x-2,	find	а
polynomial	whose	zeros		are
$2lpha+1 ext{ and } 2eta+1.$				
Watch Video Solution				

5. Draw a graph of the equations: 3x - 2y = 4

and x + y - 3 = 0

6. If α and β are the zeros of the polynomial $f(x) = 2x^2 + 5x + k$ satisfying the relation $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, then find the value of k for this to be possible.

7. If lpha and eta are the zeros of the quadratic polynomial $f(x)=kx^2+4x+4$ such that $lpha^2+eta^2=24$, find the value of k.

8. If lpha and eta ar the zeros of the polynomial $f(x)=x^2-5x+k$ such that lpha-eta=1, find the value of k.

A. — 5 B. 6 C. 5

 $\mathsf{D.}-6$

Answer: B

10. If lpha andeta are the zeros of the quadratic polynomial $f(x)=ax^2+bx+c,$ then

evaluate:
$$\alpha^2 + \beta^2$$
 (ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (iii) $\alpha^3 + \beta^3$
 $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ (v) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$
Watch Video Solution

11. If lpha andeta are the zeros of the quadratic polynomial $f(x)=x^2-px+q,$ then find the values of $(i)lpha^2+eta^2$ (ii) $rac{1}{lpha}+rac{1}{eta}$

12. If f(x) is a polynomial such that f(a)f(b) < 0, then what is the number of zeros lying between a and b?

13. For what value of k, is 3 a zero fo the polynomial $2x^2 + x + k$?

15. If $ax^2 + bx + c = 0, a, b, c \in R$ has no real zeros, and if c < 0 , then which of the following is true?

B. a>0

D. a = 0

Answer: null

16. What must be added to
$$f(x) = 4x^4 + 2x^3 - 2x^2 + x - 1$$
 so that the resulting polynomial is divisible by $g(x) = x^2 + 2x - 3.$

19. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be ax + b, find a and b.

Watch Video Solution

20. If $lpha, eta, \gamma$ are the zeros of the polynomial $f(x) = x^3 - px^2 + qx - r,$ then

Watch Video Solution

21. If
$$\alpha$$
, β are the zeros of the polynomial $f(x) = ax^2 + bx + c$, then $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{b^2 - 2ac}{a^2}$ (b) $\frac{b^2 - 2ac}{c^2}$ (c) $\frac{b^2 + 2ac}{a^2}$ (d) $\frac{b^2 + 2ac}{c^2}$

22. If α , β are the zeros of the polynomial $f(x) = ax^2 + bx + c$, then m m m $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = (a) \frac{b^2 - 2ac}{a^2}$ (b) $\frac{b^2 - 2ac}{c^2}$ (c) $\frac{b^2 + 2ac}{a^2}$ (d) $\frac{b^2 + 2ac}{c^2}$

23. Divide the polynomial $f(x) = 3x^2 - x^3 - 3x + 5$ by the polynomial $g(x) = x - 1 - x^2$ and verify the division algorithm.

Watch Video Solution

25. Draw the graph of the polynomial $f(x) = x^2 - 2x - 8$

26. Draw the graph of the quadratic polynomial $f(x) = 3 - 2x - x^2$

Watch Video Solution

27. If lpha and eta are the zeros of the polynomial $f(x)=x^2+px+q, \hspace{1.5cm}$ form a polynomial whose zeros are $(lpha+eta)^2$ and $(lpha-eta)^2$.

28. Draw the graph of the polynomial $f(x) = -4x^2 + 4x - 1$. Also find the vertex

of this parabola.

29. If the sum of the zeros of the quadratic polynomial $f(t)=kt^2+2t+3k$ is equal to

their product, find the value of k_{\cdot}

30. Draw the graph of the polynomial $f(x) = -3x^2 + 2x - 1.$ Watch Video Solution

31. Find the zeros of the quadratic polynomial $x^2 + 7x + 12$, and verify the relation between the zeros and its coefficients.

32. Find the zeros of polynomial $f(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3};$ and verify relation between zeros and its coefficient.

34. Obtain all the zeros of the polynomial
$$f(x)=3x^4+6x^3-2x^2-10x-5$$
, if two of its zeros are $\sqrt{rac{5}{3}}$ and $\sqrt{-rac{5}{3}}$

Watch Video Solution

35. What must be subtracted from
$$8x^4 + 14x^3 - 2x^2 + 7x - 8$$
 so that the resulting polynomial is exactly divisible by $4x^2 + 3x - 2$.

36. By applying division algorithm prove that the polynomial $g(x) = x^2 + 3x + 1$ is a factor of the polynomial $f(x) = 3x^4 + 5x^3 - 7x^2 + 2x + 2.$ Watch Video Solution

37. Find the condition that the zeroes of the polynomial $f(x) = x^3 - px^2 + qx - r$ may be in arithmetic progression.

38. Find the zeros of the polynomial $f(x) = x^3 - 5x^2 - 2x + 24$, if it is given

that the product of its two zeros is 12.

40. If $lpha\,$ and $\,eta\,$ are the zeros of the quadratic polynomial $f(x)=x^2-2x+3,\,\,\,$ find a polynomial whose roots are $lpha+2,\,eta+2$.

41. Draw the graph of the polynomial $f(x) = x^3 - 4x$.

42. Draw the graph of the cubic polynomial

$$f(x)=x^3-2x^2$$
 .

44. If each one of the following graphs is the graph of a polynomial, then identify which one corresponds to a linear polynomial and which one corresponds to a quadratic polynomial? (FIGURE)

Watch Video Solution

45. The graphs of $y = ax^2 + bx + c$ are given in Fig. Identify the signs of a, b and c in each

of the following: (FIGURE)

46. Find the zeros of the quadratic polynomial

 $f(x) = 6x^2 - 3$, and verify the relation-ship

between the zeros and its coefficients:

47. Find the zeros of the polynomial $f(u) = 4u^2 + 8u$, and verify the relationship between the zeros and its coefficients.

48. Find a quadratic polynomial each with the given numbers as the sum and product of its zeros respectively (i) $\frac{1}{4}$, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) $0, \sqrt{5}$

49. If lpha and eta are the zeros of the quadratic polynomial $f(x)=2x^2-5x+7$, find a polynomial whose zeros are 2lpha+3eta and 3lpha+2eta .

Watch Video Solution

50. If α and β are the zeros of the quadratic polynomial $f(x)=3x^2-4x+1$, find a quadratic polynomial whose zeros are $rac{lpha^2}{eta}$ and $rac{eta^2}{2}$

$$\alpha$$

relationship between the zeros and their coefficients:

53. Find the zeros of polynomial $h(t)=t^2-15$ and verify the relationship

between the zeros and their coefficients:

54. Find the zeros of polynomial $6x^2 - 3 - 7x$ and verify the relationship between the zeros and their coefficients:

56. Find the zeros of polynomial $q(x) = \sqrt{3}x^2 + 10x + 7\sqrt{3}$ and verify the relationship between the zeros and their coefficients:

Watch Video Solution

57. Find the zeros of polynomial $f(x) = x^2 - (\sqrt{3} + 1)x + \sqrt{3}$ and verify the relationship between the zeros and their coefficients:

58. Find the zeros of polynomial $g(x) = a(x^2 + 1) - x(a^2 + 1)$ and verify the relationship between the zeros and their coefficients:

Watch Video Solution

59. If lpha and eta are the zeros of the quadratic polynomial $p(x)=4x^2-5x-1$, find the

value of $\alpha^2\beta + \alpha\beta^2$.

Watch Video Solution

60. If lpha and eta are the zeros of the quadratic polynomial $f(t)=t^2-4t+3$, find the value of $lpha^4eta^3+lpha^3eta^4$.

Watch Video Solution

61. If lpha and eta are the zeros of the quadratic polynomial $p(y)=5y^2-7y+1$, find the

value of
$$rac{1}{lpha}+rac{1}{eta}$$
 .

Watch Video Solution

62. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 - x - 4$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$. Watch Video Solution

63. If lpha and eta are the zeros of the quadratic polynomial $f(x)=6x^2+x-2$, find the

D. none of these

Answer: C

64. If α and β are the zeros of the quadratic polynomial $p(s) = 3s^2 - 6s + 4$, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$. Watch Video Solution

65. If one zero of the quadratic polynomial $f(x) = 4x^2 - 8kx - 9$ is negative of the other, find the value of k.

66. If the squared difference of the zeros of the quadratic polynomial $f(x) = x^2 + px + 45$ is equal to 144, find the value of p.

Watch Video Solution

67. If lpha and eta are the zeros of the quadratic polynomial $f(x)=x^2-p(x+1)-c$, show that (lpha+1)(eta+1)=1-c .

68. If α and β are the zeros of a quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha - \beta = 8$, find a quadratic polynomial having α and β as its zeros.

Watch Video Solution

69. If α and β are the zeros of the quadratic polynomial $f(x)=x^2-1$, find a quadratic polynomial whose zeros are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.

70. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 - 3x - 2$, find a quadratic polynomial whose zeros are $\frac{1}{2\alpha + \beta}$ and $\frac{1}{2\beta + \alpha}$. Watch Video Solution

71. If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate: (i) $\alpha - \beta$ (ii) $\frac{1}{\alpha} - \frac{1}{\beta}$ (iii) $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$ 72. If α and β are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate: (i) $\alpha^2\beta + \alpha\beta^2$ (ii) $\alpha^4 + \beta^4$ (iii) $\frac{1}{a\alpha + b} + \frac{1}{a\beta + b}$

Watch Video Solution

Watch Video Solution

73. If lpha and eta are the zeros of the quadratic polynomial $f(x) = ax^2 + bx + c$, then

evaluate: (i)
$$\frac{\beta}{a\alpha+b} + \frac{\alpha}{a\beta+b}$$
 (ii)
 $a\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right) + b\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$
Watch Video Solution

74. Verify that 3, -1 and $-\frac{1}{3}$ are the zeros of the cubic polynomial $p(x) = 3x^3 - 5x^2 - 11x - 3$ and then verify the relationship between the zeros and its coefficients.

75. Find a cubic polynomial with the sum, sum of the products of its zeros taken two at a time, and product of its zeros as 2, -7, -14 respectively.

Watch Video Solution

76. Find the condition which must be satisfied by the coefficients of the polynomial $f(x) = x^3 - px^2 + qx - r$ when the sum of

its two zeros is zero.

77. If the two zeros of polynomial $f(x) = x^3 - 4x^2 - 3x + 12$ are $\sqrt{3}$ and $-\sqrt{3}$

; then find its third zero.

Watch Video Solution

78. Find the zeros of the polynomial $f(x) = x^3 - 5x^2 - 16x + 80$, if its two zeros

are equal in magnitude but opposite in sign.

79. Find the zeros of the polynomial $f(x) = x^3 - 12x^2 + 39x - 28$, if it is given

that the zeros are in A.P.

Watch Video Solution

80. If the zeros of the polynomial
$$f(x)=x^3-3x^2+x+1$$
 are $a-b,\ a,\ a+b,\ ext{find}\ a\ ext{and}\ b$.

81. Verify that the numbers given along side of the cubic polynomial $f(x) = 2x^3 + x^2 - 5x + 2;$ $\frac{1}{2},$ 1, -2 are its zeros. Also, verify the relationship between the zeros and coefficients.

Vatch Video Solution

82. Verify that the numbers given along side of

the cubic polynomial $g(x)=x^3-4x^2+5x-2;\ 2,\ 1,\ 1$ are its

zeros. Also, verify the relationship between the

zeros and coefficients.

and product of its zeros as $3, \ -1$ and -3

respectively.

84. If the zeros of the polynomial $f(x) = 2x^3 - 15x^2 + 37x - 30$ are in A.P., find them.

85. Find the condition that the zeros of the polynomial $f(x) = x^3 + 3px^2 + 3qx + r$ may be in A.P.

86. If the zeros of the polynomial $f(x)=ax^3+3bx^2+3cx+d$ are in A.P., prove that $2b^3-3abc+a^2d=0$.

Watch Video Solution

87. If the zeros of the polynomial $f(x) = x^3 - 12x^2 + 39x + k$ are in A.P., find

the value of k .

Watch Video Solution

90. Divide the polynomial $u(x) = 9x^4 - 4x^2 + 4$ by the polynomial $v(x) = 3x^2 + x - 1$. Also, find the quotient and remainder.

91. Divide the polynomial
$$f(x)=30x^4+11x^3-82x^2-12x+48$$
 by $3x^2+2x-4$. Also, find the quotient and remainder.

92. Apply the division algorithm to find the quotient and remainder on dividing $f(x) = x^3 - 6x^2 + 11x - 6$ by g(x) = x + 2

95. Apply the division algorithm to find the quotient and remainder on dividing $f(x) = x^4 - 5x + 6$ by $g(x) = 2 - x^2$

96. Find all the zeros of the polynomial $f(x)=2x^4-3x^3-3x^2+6x-2$, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.

97. If two zeros of the polynomial
$$f(x)=x^4-6x^3-26x^2+138x-35$$
 are $2\pm\sqrt{3}$, find other zeros.

98. On dividing the polynomial $f(x) = x^3 - 3x^2 + x + 2$ by a polynomial g(x) , the quotient q(x) and remainder r(x) where q(x) = x - 2 and r(x) = -2x + 4 respectively. Find the polynomial g(x) .

divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a , find kand a .

Watch Video Solution

100. Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing $f(x) = x^3 - 6x^2 + 11x - 6$ by $g(x) = x^2 + x + 1$

101. Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing $f(x) = 10x^4 + 17x^3 - 62x^2 + 30x - 3$ by $g(x) = 2x^2 + 7x + 1$

Watch Video Solution

102. Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing $f(x) = 4x^3 + 8x + 8x^2 + 7$ by $g(x) = 2x^2 - x + 1$

103. Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing $f(x) = 15x^3 - 20x^2 + 13x - 12$ by $g(x) = 2 - 2x + x^2$

Watch Video Solution

104. Check whether $g(t)=t^2-3$ is a factor of

 $f(t) = 2t^4 + 3t^3 - 2t^2 - 9t - 12$ by applying

the division algorithm.

Watch Video Solution

Watch Video Solution

105. Check whether $g(x) = x^3 - 3x + 1$ is a factor of $f(x) = x^5 - 4x^3 + x^2 + 3x + 1$ by applying the division algorithm.

106. Check whether $g(x)=2x^2-x+3$ is a factor of $f(x)=6x^5-x^4+4x^3-5x^2-x-15$ by applying the division algorithm.

107. Obtain all zeros of the polynomial $f(x)=2x^4+x^3-14x^2-19x-6$, if two of its zeros are -2 and -1 .

111. What must be added to the polynomial $f(x)=x^4+2x^3-2x^2+x-1$ so that the resulting polynomial is exactly divisible by x^2+2x-3 ?

Watch Video Solution

112. What must be subtracted from the polynomial

 $f(x) = x^4 + 2x^3 - 13x^2 - 12x + 21$ so that

the resulting polynomial is exactly divisible by

$$x^4 - 4x + 3$$
?

Watch Video Solution

113. Find all zeros of the polynomial $f(x) = x^4 + x^3 - 34x^2 - 4x + 120$, if two of its zeros are 2 and -2 .

114. Find all zeros of the polynomial $f(x)=2x^3+x^2-6x-3$, if two of its zeros are $-\sqrt{3}$ and $\sqrt{3}$.

Watch Video Solution

115. Find all zeros of the polynomial $f(x)=x^3+3x^2-2x-6$, if two of its zeros are $-\sqrt{2}$ and $\sqrt{2}$.

116. Define a polynomial with real coefficients.

119. Write the standard form of a quadratic polynomial with real coefficients.

Watch Video Solution

120. Write the standard form of a cubic polynomial with real coefficients.

121. Define value of a polynomial at a point.

124. find a quadratic polynomial each with given numbers as the sum and product of its zeroes 1/4,-1.

Watch Video Solution

125. If the product of zeros of the quadratic polynomial $f(x) = x^2 - 4x + k$ is 3, find the value of k .

126. If the sum of the zeros of the quadratic polynomial $f(x)=kx^2-3x+5$ is 1, write the value of k .

Watch Video Solution

127. In Fig. 2.17, the graph of a polynomial p(x)

is given. Find the zeros of the polynomial.

(FIGURE)

128. The graph of a polynomial y = f(x) , shown in Fig. 2.18. Find the number of real

zeros of f(x) . (FIGURE)

129. The graph of the polynomial $f(x) = ax^2 + bx + c$ is as shown below (Fig. 2.19). Write the signs of 'a' and $b^2 - 4ac$. FIGURE

130. The graph of the polynomial $f(x) = ax^2 + bx + c$ is as shown in Fig. 2.20. Write the value of $b^2 - 4ac$ and the number of real zeros of f(x) . (FIGURE)

Watch Video Solution

131. In Q. No. 14, write the sign of c.

132. In Q. No. 15, write the sign of c.

133. The graph of a polynomial f(x) is as shown in Fig. 2.21. Write the number of real zeros of f(x) . (FIGURE)

134. If x=1 is a zero of the polynomial $f(x)=x^3-2x^2+4x+k$, write the value of k .

135. State Division algorithm for polynomials

136. Give an example of polynomials $f(x), \ g(x), \ q(x)$ and r(x) satisfying $f(x) = g(x)\dot{q}(x) + r(x)$, where degree r(x) = 0.

Watch Video Solution

137. Write a quadratic polynomial, sum of

whose zeros is $2\sqrt{3}$ and their product is 2.

138. If fourth degree polynomial is divided by a quadratic polynomial, write the degree of the remainder.

139. If
$$f(x) = x^3 + x^2 - ax + b$$
 is divisible by $x^2 - x$ write the values of a and b .

140. If $a-b,\ a$ and a+b are zeros of the polynomial $f(x)=2x^3-6x^2+5x-7$, write the value of a .

141. Write the coefficients of the polynomial $p(z) = z^5 - 2z^2 + 4$.

142. Write the zeros of the polynomial $x^2 - x - 6$. Watch Video Solution 143. If (x + a) is a factor of

```
2x^2+2ax+5x+10 , find a .
```

144. For what value of k, if -4 is a zero of

the polynomial $x^2 - x - (2k+2)$?

Watch Video Solution

145. If 1 is a zero of the polynomial $p(x) = ax^2 - 3(a-1)x - 1$, then find the value of a .

146. If α , β are the zeros of the polynomial such that $\alpha + \beta = -6$ and $\alpha\beta = -4$, then write the polynomial.

147. If $lpha,\ eta$ are the zeros of the polynomial $2y^2+7y+5$, write the value of lpha+eta+lphaeta

148. For what value of k , is 3 a zero of the

polynomial $2x^2 + x + k$?

Watch Video Solution

149. For what value of k , is -3 a zero of the polynomial $x^2 + 11x + k$

150. If a quadratic polynomial f(x) is factorizable into linear distinct factors, then what is the total number of real and distinct zeros of f(x)?

Watch Video Solution

151. If a quadratic polynomial f(x) is a square

of a linear polynomial, then its two zeroes are

coincident. (True / False)

152. If a quadratic polynomial f(x) is not factorizable into linear factors, then it has no real zero. (True/false).

153. If graph of quadratic polynomial $ax^2 + bx + c$ cuts positive direction of y-axis, then what is the sign of c ?

154. If the graph of quadratic polynomial $ax^2 + bx + c$ cuts negative direction of y-axis, then what is the sign of c ?

Watch Video Solution

155. If $lpha,\ eta$ are the zeros of the polynomial $f(x)=x^2+x+1$, then $rac{1}{lpha}+rac{1}{eta}=$ (a) 1

(b) -1

(c) 0

(d) None of these

Watch Video Solution

156. If α , β are the zeros of the polynomial $p(x) = 4x^2 + 3x + 7$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to (a) $\frac{7}{3}$ (b) $-\frac{7}{3}$

(b)
$$-\frac{7}{3}$$

(c) $\frac{3}{7}$
(d) $-\frac{3}{7}$

157. If one zero of the polynomial $f(x)=ig(k^2+4ig)x^2+13x+4k$ is reciprocal of the other, then k= (a) 2 (b) -2 (c) 1 (d) -1

Watch Video Solution

158. If the sum of the zeros of the polynomial $f(x) = 2x^3 - 3kx^2 + 4x - 5$ is 6, then the value of k is (a) 2 (b) 4 (c) -2 (d) -4

A. (a) 2

B. null

C. null

D. null

Answer: null

Watch Video Solution

159. If α and β are the zeros of the polynomial

$$f(x)=x^2+px+q$$
 , then a polynomial having $rac{1}{lpha}$ and $rac{1}{eta}$ as its zeros is

..... (a) x^2+qx+p (b) x^2-px+q (c) qx^2+px+1 (d) px^2+qx+1

Watch Video Solution

160. If $lpha,\ eta$ are the zeros of polynomial $f(x)=x^2-p(x+1)-c$, then (lpha+1)(eta+1)= (a) c-1 (b) 1-c (c) c (d) 1+c

A. c-1

B. null

C. null

D. null

Answer: null

161. If
$$lpha,\ eta$$
 are the zeros of the polynomial $f(x)=x^2-p(x+1)-c$ such that $(lpha+1)(eta+1)=0$, then $c=$ (a) 1 (b) 0 (c) -1 (d) 2

162. Figure 2.23 show the graph of the polynomial $f(x) = ax^2 + bx + c$ for which (a) a < 0, b > 0 and c > 0 (b) a < 0, b < 0 and c > 0 (c) a < 0, b < 0 and c < 0 (d) a > 0, b > 0 and c < 0

Watch Video Solution

163. Figure 2.23 shows the graph of the polynomial $f(x) = ax^2 + bx + c$ for which

164. If the product of zeros of the polynomial

$$f(x) = ax^3 - 6x^2 + 11x - 6$$
 is 4, then $a =$
(a) $rac{3}{2}$ (b) $-rac{3}{2}$ (c) $rac{2}{3}$ (d) $-rac{2}{3}$

165. If the product of two zeros of the polynomial $f(x) = 2x^3 + 6x^2 - 4x + 9$ is 3, then its third zero is (a) $\frac{3}{2}$ (b) $-\frac{3}{2}$ (c) $\frac{9}{2}$ (d) $-\frac{9}{2}$ Watch Video Solution

166. If the polynomial $f(x) = ax^3 + bx - c$ is divisible by the polynomial $g(x) = x^2 + bx + c$, then ab = (a) 1 (b) $\frac{1}{c}$ (c) -1 (d) $-\frac{1}{c}$

168. If one root of the polynomial $f(x) = 5x^2 + 13x + k$ is reciprocal of the other, then the value of k is (a) 0 (b) 5 (c) $\frac{1}{6}$ (d)

6

169. If α , β , γ are the zeros of the polynomial $f(x) = ax^3 + bx^2 + cx + d$, then $rac{1}{lpha} + rac{1}{eta} + rac{1}{\gamma} = ext{ (a) } rac{b}{d} ext{ (b) } rac{c}{d} ext{ (c) } - rac{c}{d} ext{ (d) } rac{c}{a}$

A. b/d

B. null

C. null

D. null

Answer: null

170. If two of the zeros of the cubic polynomial $ax^3 + bx^2 + cx + d$ are each equal to zero, then the third zero is (a) $\frac{d}{a}$ (b) $\frac{c}{a}$ (c) $-\frac{b}{a}$ (d) $\frac{b}{a}$

Watch Video Solution

173. What should be added to the polynomial x^2-5x+4 , so that 3 is the zero of the resulting polynomial? (a) 1 (b) 2 (c) 4 (d) 5

174. What should be subtracted to the polynomial $x^2 - 16x + 30$, so that 15 is the zero of the resulting polynomial? (a) 30 (b) 14 (c) 15 (d) 16

Watch Video Solution

175. A quadratic polynomial, the sum of whose zeroes is 0 and one zero is 3, is (a) $x^2 - 9$ (b) $x^2 + 9$ (c) $x^2 + 3$ (d) $x^2 - 3$

A. x^2-9.

B. null

C. null

D. null

Answer: null

177. If $\sqrt{5}$ and $-\sqrt{5}$ are two zeros of the polynomial $x^3 + 3x^2 - 5x - 15$, then its third zero is (a) 3 (b) -3 (c) 5 (d) -5

Watch Video Solution

178. If x+2 is a factor of $x^2+ax+2b$ and a+b=4, then (a) $a=1,\ b=3$ (b)

 $a=3,\;b=1$ (c) $a=-1,\;b=5$ (d)

$$a=5,\;b=\;-1$$

Watch Video Solution

179. The polynomial which when divided by $-x^2 + x - 1$ gives a quotient x - 2 and remainder 3, is (a) $x^3 - 3x^2 + 3x - 5$ (b) $x^3 - 3x^2 - 3x - 5$ (c) $-x^3 + 3x^2 - 3x + 5$ (d) $x^3 - 3x^2 - 3x + 5$