©"doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

ARITHMETIC PROGRESSIONS

Others

1. Which term of the sequence $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots$ is the first negative term?

- Watch Video Solution

2. Which term of the sequence ${ }^{`} 8-6 \mathrm{i}, 7-4 \mathrm{i}, 6-2 \mathrm{i}, \ldots .$. is (i) purely real (ii) purely imaginary?
3. Find the rth term of an A.P., the sum of whose first n terms is $3 n^{2}+4 n$

- Watch Video Solution

4. Show that the sequence defined by $a_{n}=2 n^{2}+1$ is not an A.P.

- Watch Video Solution

5. Show that the sequence $\log a, \log \left(\frac{a^{2}}{b}\right), \log \left(\frac{a^{3}}{b^{2}}\right), \log \left(\frac{a^{4}}{b^{3}}\right)$, forms an A.P.

- Watch Video Solution

6. The nth term of a sequence is given by $a_{n}=2 n+7$. Show that it is an A.P. Also, find its 7th term.

D Watch Video Solution

7. Show that the sequence $\log a, \log (a b), \log \left(a b^{2}\right), \log \left(a b^{3}\right)$, is an A.P. Find its nth term.

- Watch Video Solution

8. Which term of the sequence $72,70,68,66, .$. is 40 ?

- Watch Video Solution

9. Show that the sequence is an A.P. if its nth term is linear expression in n and in such a case the common difference is equal to the coefficient of n.
10. The nth term of a sequence is given by $a_{n}=2 n+7$. Show that it is an A.P. Also, find its 7th term.

- Watch Video Solution

11. The product of three numbers in A.P. is 224 , and the largest number is 7 times the smallest. Find the numbers.

- Watch Video Solution

12. The fourth power of common difference of an arithmetic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
13. The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6 , find three terms.

- Watch Video Solution

14. The internal angles of quadrilateral are in A.P. and their common difference is 10°. Find them.

- Watch Video Solution

15. Find the sum of all natural between 250 and 1000 which are exactly divisible by 3.
16. Find the sum of first 20 terms of an A.P., in which $3 r d$ terms in 7 and
$7 t h$ term is tow more than thrice of its $3 r d$ term.

- Watch Video Solution

17. Find the number of terms in the series $20,19 \frac{1}{3}, 18 \frac{2}{3} \ldots$ the sum of which is 300 . Explain the answer.

- Watch Video Solution

18. The sums of n terms of three arithmetical progressions are S_{1}, S_{2} and S_{3}. The first term of each unity and the common differences are 1,2 and 3 respectively. Prove that $S_{1}+S_{3}=2 S_{2}$.

- Watch Video Solution

19. If in an A.P. the sum of m terms is equal of n and the sum of n terms is equal to m, then prove that the sum of $-(m+n)$ terms is $(m+n)$

- Watch Video Solution

20. The first , second and the last terms of an A.P. are a, b, c respectively.

Prove that the sum is $\frac{(a+c)(b+c-2 a)}{2(b-a)}$.

- Watch Video Solution

21. If $\frac{3+5+7+u p \rightarrow n \text { terms }}{5+8+11+u p \rightarrow 10 \text { terms }}=7$, then find the value of n.

- Watch Video Solution

22. In a factory, 150 workers were engaged to finish a piece of work in a certain number of days. However, if 4 workers are dropped everyday,
except the first day, it will take 8 more days to finish the work. Find the number of days in which the work was to be completed.

- Watch Video Solution

23. Prove that the sum of n arithmetic means between two numbers in n times the single A.M. between them.

- Watch Video Solution

24. If a, b, c are in A.P., then prove that: $(a-c)^{\wedge} 2=4\left(b^{\wedge} 2-a c\right)$.

- Watch Video Solution

25. If $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$, are in A.P. show that either a, b, c are in A.P., or $a b+b c+c a=0$.
26. If n arithemetic means are inserted between 20 and 80 such that the ratio of first mean to the last mean is $1: 3$, then find the value of n.

- Watch Video Solution

27. Along a road lie an odd number of stones placed at intervals of 10 metres. These stones have to be assembled around the middle stone. A person can carry only one stone at a time. A man carried the job with one of the end stones by carrying them in succession. In carrying all the stones he covered a distance of 3 km . Find the number of stones.

- Watch Video Solution

28. A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
29. In a potato race 20 potatoes are placed in a line at intervals of 4 meters with first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?

- Watch Video Solution

30. We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with $3,4,5,6$ sides form an arithmetic progression. Find the sum of the interior angles of a 21 sided polygon.

- Watch Video Solution

31. If S_{1} be the sum of $(2 n+1)$ term of an A.P. and S_{2} be the sum of its odd terms then prove that $S_{1}: S_{2}=(2 n+1):(n+1)$.

- Watch Video Solution

32. Divide 32 into four parts which are in A.P. such that the product of extremes is to the product of means is $7: 15$.

- Watch Video Solution

33. If $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{n}$ are in AP, whose common difference is d, show that $\sec \theta_{1} \sec \theta_{2}+\sec \theta_{2} \sec \theta_{3}+\ldots .+\sec \theta_{n-1} \sec \theta_{n}=\frac{\tan \theta_{n}-\tan \theta_{1}}{\sin d}$

- Watch Video Solution

34. If $(m+1)$ term of an A.P. is twice the $(n+1)$ th term, prove that
$(3 m+1)$ th terms is twice the $(m+n+1)$ th term.
35. If $a_{1}, a_{2}, a_{3},, a_{n}$ are in A.P. with common difference $d($ whered $\neq 0)$, then the sum of series.
$\sin d\left(\cos e c a_{1} \cos e c a_{2}+\cos e c a_{2} \cos e c a_{3}+\ldots .+\operatorname{cosec} a_{n-1} \cos e c a_{n}\right)$ is equal to $\cot a_{1}-\cot a_{n}$

- Watch Video Solution

36. If an A.P. is such that $\frac{a_{4}}{a_{7}}=\frac{2}{7}$, find $\frac{a_{6}}{a_{8}}$.

- Watch Video Solution

37. The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by four. Find the first term and the common difference.
38. Find the number of terms common to the two AP's $3,7,11,15 \ldots . .407$ and 2, $9,16709$.

Watch Video Solution

39. the sum of terms equidistant from the beginning and end in an AP is equal to \qquad

D Watch Video Solution

40. If $a_{1}, a_{2}, a_{3}, a_{n}$ are an A.P. of non-zero terms, prove that $\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}++\frac{1}{a_{n-1} a_{n}}=\frac{n-1}{a_{1} a_{n}}$
A. $\frac{n-1}{a_{1} a_{n}}$.
B. $\frac{n+1}{a_{1} a_{n}}$.
C. $\frac{1-n}{a_{1} a_{n}}$.
D. $\frac{n}{a_{1} a_{n}}$.

Answer: A

- Watch Video Solution

41. If $a_{1}, a_{2}, a_{3}, a_{n}$ are in A.P., where $a_{i}>0$ for all i, show that
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}++\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$.

- Watch Video Solution

42. The $p^{t h}$ term of an A.P. is a and $q^{t h}$ term is b Prove that the sum of its
$(p+q)$ terms is $\frac{p+q}{2}\left\{a+b+\frac{a-b}{p-q}\right\}$.

- Watch Video Solution

43. If $S_{1}, S_{2}, S_{3}, S_{m}$ are the sums of n terms of m A.P. ' s whose first terms are $1,2,3, \ldots m$ and common differences are $1,3,5, \ldots(2 m-1) \quad$ respectively. Show that $S_{1}+S_{2} \ldots .+S_{m}=\frac{m n}{2}(m n+1)$

(D) Watch Video Solution

44. Let S_{n} be the sum of first n terms of an A.P. with non-zero common difference. Fine the ratio of first term and common difference if $\frac{S_{n_{1} n_{2}}}{S_{n_{1}}}$ is independent of n_{1}.

- Watch Video Solution

45. If there are $(2 n+1)$ terms in A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is $(n+1): n$.
46. The ratio of the sum of n terms of two A.P. s is $(7 n+1):(4 n+27)$.

Find the ratio of their mth terms.

- Watch Video Solution

47. Show that $x^{2}+x y+y^{2}, z^{2}+x z+x^{2}, y^{2}+y z+z^{2}$, are consecutive terms of an A.P., if x, y and z are in A.P.

- Watch Video Solution

48. If a, b, c are in A.P., prove that: i. $(a-c)^{2}=4(a-b)(b-c)$
ii. $a^{2}+c^{2}+4 a c=2(a b+b c+c a)$
iii. $a^{3}+c^{3}+6 a b c=8 b^{3}$

- Watch Video Solution

49. Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7 .

- Watch Video Solution

50. If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that $(m+n)\left(\frac{1}{m}-\frac{1}{p}\right)=(m+p)\left(\frac{1}{m}-\frac{1}{n}\right)$.

- Watch Video Solution

51. Suppose x and y are two real numbers such that the r thean between x and $2 y$ is equal to the rth mean between $2 x$ and y when n arithmetic means are inserted between them in both the cases. Show that $\frac{n+1}{r}-\frac{y}{x}=1$.
52. The sum of two numbers is $\frac{13}{6}$. An even number of arithmetic means are being inserted between them and sum exceeds their number by 1 . find the number of means inserted.

- Watch Video Solution

53. The digits of a positive integer, having three digits, are in A.P. and their sum is 15 . The number obtained by reversing the digits is 594 less than the original number. Find the number.

- Watch Video Solution

54. If x, y, z are in A.P. and A_{1} is the A.M. of $x a n d y a n d A_{2}$ is the A.M. of yandz, then prove that the A.M. of A_{1} and $A_{2} i s y$.

- Watch Video Solution

55. A man repays a loan of $R s .3250$ by paying $R s .20$ in the first month and then increases the payment by Rs. 15 every month. How long will it take him to clear the loan?

- Watch Video Solution

56. If $\frac{b+c-a}{a}, \frac{b+c-a}{b}, \frac{b+c-a}{c}$, are in A.P., prove that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are also in A.P.

- Watch Video Solution

57. If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P., then prove that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are also in A.P.

- Watch Video Solution

58. If a, b, c are in A.P., prove that $\frac{1}{b c}, \frac{1}{c a}, \frac{1}{a b}$, is also in A.P.

(D) Watch Video Solution

59. If a^{2}, b^{2}, c^{2} are in A.P., then prove that the following are also in A.P. Prove $1 /(b+c), 1 /(c+a), 1 /(a+b)^{`}$

- Watch Video Solution

60. Two cars start together in the same direction from the same place. The first goes with uniform speed of $10 \mathrm{~km} / \mathrm{h}$. The second goes at a speed of $8 \mathrm{~km} / \mathrm{h}$ in the first hour and increases the speed by $1 / 2 \mathrm{~km}$ each succeeding hour. After how many hours will the second car overtake the first car if both cars to non-stop?

- Watch Video Solution

61. Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
62. If $\log 2, \log \left(2^{x}-1\right), \log \left(2^{x}+3\right)$ are in A.P., write the value of x.

- Watch Video Solution

63. The sums of first n terms of two A.P. 's are in hte ratio $(7 n+2):(n+4)$. Find the ratio of their 5 th terms.

- Watch Video Solution

64. Give first 3 terms of the sequence defined by $a_{n}=\frac{n}{n^{2}+1}$.

- Watch Video Solution

65. Find the first four terms of the sequence whose first term is 1 and whose $(n+1)$ th term is obtained by subtracting n from its nth term.
66. $1,4,7,10$,is an A.P. whose first term is 1 and the common difference is equal to $4-1=3$.

- Watch Video Solution

67. $11,7,3,-1$ is an A.P. whose first term is 11 and the common difference is equal to $7-11=4$.

- Watch Video Solution

68. The nth term of a sequence is $3 n-2$ is the sequence an A.P.? If so, find its 10th term.
69. If the nth term a_{n} of a sequence is given by $a_{n}=n^{2}-n+1$ write down its first five terms.

- Watch Video Solution

70. A sequence is defined by $a_{n}=n^{3}-6 n^{2}+11 n-6$. Show that the first three terms of the sequence are zero and all other terms are positive.

- Watch Video Solution

71. Find the first four terms of the sequence defined by $a_{1}=3$ and $a_{n}=3 a_{n-1}+2$, for all n.1.

- Watch Video Solution

72. Write the first five terms in each of the following sequence:

$$
a_{1}=1, a_{n}=a_{n-1}+2, n>1
$$

- Watch Video Solution

73. Write the first five terms in each of the following sequence:
$a_{1}=1=a_{2}, a_{n}=a_{n-1}+a_{n-2}, n>2$

- Watch Video Solution

74. Write the first five terms in each of the following sequence: $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>1$.

- Watch Video Solution

75. The Fibonacci sequence is $\begin{gathered}\text { defined }\end{gathered}$ by
$a_{1}=1=a_{2}, a_{n}=a_{n-1}+a_{n-2}$ for $n>2$. Find $\frac{a_{n+1}}{a_{n}}$ for

$$
n=1,2,3,4,5 .
$$

- Watch Video Solution

76. Show that each of the following sequences is an A.P. Also, find the common difference and write 3 more terms in each case.
i. $3,-1,-5,-9 \ldots .$.
ii. $-1,1 / 4,3 / 2,11 / 4 \ldots$.

- Watch Video Solution

77. Show that each of the following sequences is an A.P. Also, find the common difference and write 3 more terms in each case.
i. $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}, 7 \sqrt{2} \ldots \ldots$ ii. $9,7,5,3 \ldots$.

- Watch Video Solution

78. The nth term of a sequence is given by $a_{n}=2 n^{2}+n+1$. Show that it is not an A.P.

- Watch Video Solution

79. Show that the sequence $9,12,15,18, \ldots$ is an A.P. Find its 16th term and the general term.

- Watch Video Solution

80. Which term of the sequence $4,9,14,19 \ldots$.... is 124 ?

- Watch Video Solution

81. How many terms are there in the sequence $3,6,9,12, \ldots \ldots .111$?
82. Is 184 a term of the sequence $3,7,11, \ldots$?

- Watch Video Solution

83. If pth,qth and rth terms of an A.P. are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively, then show that (i) $a(q-r)+b(r-p)+c(p-q)=0$

- Watch Video Solution

84. If pth, qth, and rth terms of an A.P. are a, b, c, respectively, then show that $(a-b) r+(b-c) p+(c-a) q=0$

- Watch Video Solution

85. Show that the sum of $(m+n)^{t h}$ and $(m-n)^{t h}$ term of an A.P. is equal to twice the $m^{\text {th }}$ term.
86. If m times the $m^{t h}$ term of an A.P. is equal to n times its $n^{t h}$ term, show that the $(m+n)^{t h}$ term of the A.P. is zero.

(D) Watch Video Solution

87. If the $p^{t h}$ term of an A.P. is q and the $q^{\text {th }}$ term is p, prove that its
$n^{\text {th }}$ termis $(p+q-n)$.

- Watch Video Solution

88. If the m th term of an A.P. be $1 / n$ and nth term be $1 / m$ then show that its ($m n$) th term is 1.

- Watch Video Solution

89. Determine the number of terms in the terms in the A.P. 3,7,11... 407 .

Also, find its 20th term from the end.

- Watch Video Solution

90. How many numbers of two digits are divisible by 7 ?

(D) Watch Video Solution

91. Show that there is no A.P. which consists of only distinct prime numbers.

- Watch Video Solution

92. In the arithmetic progressions $2,5,8, \ldots$ upto 50 terms and $3,5,7,9 \ldots$ upto 60 terms, find how many terms are identical.
93. Find: 10 th term of the A.P. 1,4,7,10..

- Watch Video Solution

94. Find: nth term of the A.P. $13,8,3,-2, .$.

- Watch Video Solution

95. Find: 18th term of the A.P. $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}$..

- Watch Video Solution

96. Evaluate $(\sqrt{3}-\sqrt{2})^{6}+(\sqrt{3}+\sqrt{2})^{6}$.

- Watch Video Solution

97. If the sequence a_{n} is A.P., show that $a_{m+n}+a_{m-n}=2 a_{m}$.

- Watch Video Solution

98. Which term of the A.P. $3,8,13$... is 248 ?

- Watch Video Solution

99. Which term of the A.P. $84,80,76$... is 0 ?

- Watch Video Solution

100. Which term of the A.P. $4,9,14 \ldots$ is 254 ?

- Watch Video Solution

101. Is 68 as term of the A.P. $7,10,13, \ldots$?

- Watch Video Solution

102. Is 302 a term of the A.P. $3,8,13$,...?

- Watch Video Solution

103. Which term of the sequence $24,23 \frac{1}{4}, 22 \frac{1}{2}, 21 \frac{3}{4}$ is the first negative term?

Watch Video Solution

104. Which term of the sequence $12+8 i, 11+6 i, 10+4 i, \ldots$ is (a) purely real and (b). purely imaginary?

(D) Watch Video Solution

105. How many terms are there in the A.P. $7,10,13, . .43$?

(D) Watch Video Solution

106. How many terms are there in the A.P.
$-1,-\frac{5}{6},-\frac{2}{3},-\frac{1}{2}, \frac{10}{3}$?

- Watch Video Solution

107. The first term of an AP. is 5 , the common difference is 3 and the last term is 80 ; find the number of terms.

- Watch Video Solution

108. The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
109. If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.

- Watch Video Solution

110. The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.

- Watch Video Solution

111. In certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34 th term.

- Watch Video Solution

112. If the nth term of the A.P. $9,7,5, .$. is same as the nth term of the A.P.

15,12,9,.. find n.
113. Find the 12th term from the end of the following arithmetic progression: 3,5,7,9..... 201

- Watch Video Solution

114. Find the 12th term from the end of the following arithmetic progression: 3,8,13.......... 253

- Watch Video Solution

115. Find the 12th term from the end of the following arithmetic progression: 1,4,7,10.......... 88
116. Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22 .

- Watch Video Solution

117. How many numbers of two digit are divisible by 3?

- Watch Video Solution

118. An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively find 32 nd term.

- Watch Video Solution

119. The sum of 4 th and 8 th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34 . Find the first term and the common difference of the A.P.
120. The first and the last terms of an A.P. are a and l respectively. Show that the sum of nth term from the beginning and nth term from the end is $a+l$.

- Watch Video Solution

121. The sum of three numbers in A.P. is -3 , and their product is 8 . Find the numbers.

- Watch Video Solution

122. Find the four numbers in A.P. whose sum is 20 and the sum of whose squares is 120.
123. Find the four numbers in A.P., whose sum is 50 and in which the greatest number Is 4 times the least.

- Watch Video Solution

124. Find the four numbers in A.P., whose sum is 50 and in which the greatest number Is 4 times the least.

- Watch Video Solution

125. If the sum of three numbers in A.P. is 24 and their product is 440 , find the numbers.

- Watch Video Solution

126. Find the sum of 20 terms of the A.P. 1,4,7,10.....
127. Find the sum of the series : $5+13+21++181$.

Watch Video Solution
128. Find the sum of all three digit natural numbers, which are divisible by 7 .

- Watch Video Solution

129. Find the sum of all odd integers between 2 and 100 divisible by 3

- Watch Video Solution

130. The sum of the first four terms of an A.P. is 56 . The sum of the last four terms is 112 . If its first term is 11 , then find the number of terms.
131. If the sum of n terms of an A.P. is $\left(p n+q n^{2}\right)$, where p and q are constants, find the common difference.

(D) Watch Video Solution

132. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its m th term is 164 , find the value of m.

- Watch Video Solution

133. Find the sum of n terms of the sequence $\left(a_{n}\right), w h e r e a ~_{n}=5-6 n, n \in N$.

- Watch Video Solution

134. If the $m^{\text {th }}$ term of an A.P. is $\frac{1}{n}$ and the $n^{\text {th }}$ term is $\frac{1}{m}$, show that the sumof $m n$ terms is $\frac{1}{2}(m n+1)$ where $m \neq n$.

- Watch Video Solution

135. How many terms of the series $54,51,48$,.. be taken so that their sum is 513 ? Explain the double answer

- Watch Video Solution

136. solve: $1+6+11+16+\ldots \ldots \ldots+x=148$

- Watch Video Solution

137. The sum of the first p, q, r terms of an A.P. are a, b, c respectively. Show that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
138. If the sum of first m terms of an A.P. is the same as the sum of its first n terms, show that the sum of its $(m+n)$ terms is zero.

Watch Video Solution

139. The ratio of the sum of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of the mth and nth terms is $(2 m-1):(2 n-1)$.

- Watch Video Solution

140. The interior angles of a polygon are in A.P. the smallest angle is 120^{0} and the common difference is 5^{0}. Find the number of sides of the polygon.
141. Prove that a sequence in an A.P., if the sum of its n terms is of the form $A n^{2}+B n$, where A, B are constants.
(a) an AP
(b) a GP
(c) a HP
(d) None of these

- Watch Video Solution

142. If the first term of an A.P. is 2 and the sum of first five terms is equal to one fourth of the sum of the next five terms, find the sum of first 30 terms.

- Watch Video Solution

143. The sum of n terms of two arithmetic progressions are in the ratio
$(3 n+8):(7 n+15)$. Find the ratio of their 12th terms.
144. Let S_{k} be the sum of first k terms of an A.P. What must this progression be for the ratio $\frac{S_{k x}}{S_{x}}$ to be independent of x ?

- Watch Video Solution

145. Find the sum of the following arithmetic progression: $50,46,42, .$. upto 10 terms.

- Watch Video Solution

146. Find the sum of the following series: (i) $1,3,5,7 \ldots$ upto 12 terms.

- Watch Video Solution

147. Find the sum of the following arithmetic progression: $3, \frac{9}{2}, 6, \frac{15}{2}, \ldots \ldots \ldots$. to 25 terms.

- Watch Video Solution

148. Find the sum of the following arithmetic progression: $41,36,31, \ldots . . .$. .to 12 terms.

- Watch Video Solution

149. Find the sum of the following arithmetic progression: $a+b, a-b, a-3 b, \quad \longrightarrow 22$ terms.

- Watch Video Solution

150. Find the sum of the following arithmetic progression:

$$
\frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}, \xrightarrow{\because} n \text { terms. }
$$

- Watch Video Solution

151. Find the sum of the following series: $2+5+8+\ldots+182$

- Watch Video Solution

152. Find the sum of the following series: $101+99+97+\ldots .+47$

- Watch Video Solution

153. Find the sum of the following series:
$(a-b)^{2}+\left(a^{2}+b^{2}\right)+(a+b)^{2}+\ldots+\left[(a+b)^{2}+6 a b\right]$

- Watch Video Solution

154. Find the sum of first n natural numbers.
155. Find the sum of all natural numbers between 1 and 100 , which are divisible by 2 or 5

Watch Video Solution
156. Find the sum of the first n odd numbers

- Watch Video Solution

157. Find the sum of all odd numbers between 100 and 200.

- Watch Video Solution

158. Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667 .
159. Find the sum of all integers between 84 and 719 , which are multiples of 5 .

- Watch Video Solution

160. Find the sum of all integers between 50 and 500 which are divisible by 7 .

- Watch Video Solution

161. Find the sum of all even integers between 101 and 999.

- Watch Video Solution

162. Find the sum of all integers between 100 and 550 , which are divisible by 9 .

- Watch Video Solution

163.

Find
the sum
of
the
series
$3+5+7+6+9+12+9+13+17+\rightarrow 3 n$ terms.

- Watch Video Solution

164. Solve : $25+22+19+16+\ldots+x=115$

- Watch Video Solution

165. Solve: $1+4+7+10+\ldots+x=590$.
166. How many terms are there in the A.P. whose first and fifth terms are
-14 and 2 respectively and the sum of the terms is 40 ?

- Watch Video Solution

167. The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is
168. Find the progression.

- Watch Video Solution

168. The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2 . Find the first term, the common difference and the sum of first 20 terms.

- Watch Video Solution

169. The first term of an A.P.is 2 and the last term is 50 . the sum of all these terms are 442 . Find the common difference.

- Watch Video Solution

170. The number of terms of an A.P. is even, the sum of odd terms is 24 , of the even terms is 30 , and the last term exceeds the first by $10 \frac{1}{2}$ find the number of terms and the series.

- Watch Video Solution

171. If in an A.P, $S_{n}=n^{2} p$ and $S_{m}=m^{2} p$, then S_{p} is equal to

- Watch Video Solution

172. If 12 th term of an A.P. is -13 and the sum of the first four terms is 24 , what is the sum of first 10 terms?
173. If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?

- Watch Video Solution

174. Find the sum of n terms of an A.P. whose kth terms is $5 k+1$.

D Watch Video Solution

175. Sum of all two digit numbers which when divided by 4 yield unity as remainder is.

- Watch Video Solution

176. If the sum of a certain number of terms of the AP $25,22,19 \ldots$ is 116
. Find the last term.

- Watch Video Solution

177. How many terms of the A.P. $-6,-\frac{11}{2},-5, \ldots$ are needed to give the sum - 25 ?

- Watch Video Solution

178. In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is -112 .

- Watch Video Solution

179. If $S_{n}=n P+\frac{n(n-1)}{2} Q$, where S_{n} denotes the sum of the first n terms of an A.P., then find the common difference.

- Watch Video Solution

180. The sum of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their 18 th terms.

- Watch Video Solution

181. If $\frac{2}{3}, k, \frac{5}{8}$ are in A.P., find the value of k.

- Watch Video Solution

182. If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P. prove that: $\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c}$ are in A.P.

- Watch Video Solution

183. If $a, b, \quad c$ are in A.P., prove that $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$ are also in A.P.
184. If a, b, c are in A.P, then show that: $b+c-a, c+a-b, a+b-c$ are in A.P.

- Watch Video Solution

185. If a, b, c are in A.P, then show that: $b c-a^{2}, c a-b^{2}, a b-c^{2}$ are in A.P.

- Watch Video Solution

186. If $\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c}$ are in A. P. show that $\frac{1}{a}, \frac{1}{b} \frac{1}{c}$ are also in A. P. $(a+b+c \neq 0)$.

- Watch Video Solution

187. If $\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c}$ are in A.P., prove that $: b c, c a, a b$ are in A.P.

- Watch Video Solution

188. If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P. prove that a, b, c are in A.P.

- Watch Video Solution

189. Insert 3 arithmetic means between 3 and 19 .

- Watch Video Solution

190. For what value of $n, \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is the arithmetic mean of a and b ?

- Watch Video Solution

191. Between 1 and 31 are inserted m arithmetic mean so that the ratio of the 7th and $(m-1)$ th means is 5:9. Find the value of m.

- Watch Video Solution

192. if the A.M. between $p t h$ and $q t h$ terms of an A.P. be equal to the
A.M. between r th and sth terms of the A.P., then show that $p+q=r+s$

- Watch Video Solution

193. Find the A.M. between: 7 and 13

- Watch Video Solution

194. Find the A.M. between: 12 and -8
195. Find the A.M. between: $(x-y)$ and $(x+y)$

(D) Watch Video Solution

196. Insert 4 A.M.s between 4 and 19.

- Watch Video Solution

197. Insert 7 A.M.s between 2 and 17.

- Watch Video Solution

198. Insert six A.M.s between 15 and -13.
199. There are n A.M.s between 3 and 17. The ratio of the last mean to the first mean is $3: 1$. Find the value of n.

- Watch Video Solution

200. Insert $A M$ s between 7 and 71 such that $5^{t h} A M$ is 27 . Also find the number of AMs

- Watch Video Solution

201. If n A.Ms are inserted between two numbers, prove that the sum of the means equidistant from the beginning and the end is constant.

- Watch Video Solution

202. Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

- Watch Video Solution

203. A man saved Rs. 16500 in ten years. In each year after the first he saved Rs. 100 more than be did in the receding year. How many did he save in the first year?

- Watch Video Solution

204. A man saves Rs. 32 during the first year, Rs. 36 in the second year and in this way he increases his savings by Rs. 4 every year. Find in what time his saving will be Rs. 200.

- Watch Video Solution

205. A man arranges to pay a debt of Rs 3600 in 40 monthly installments which are in AP When 30 installments are paid he dies
leaving one third of the debt unpaid Find the value of the first installment

- Watch Video Solution

206. A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find i. the production in the first year ii. the total product in 7 years and iii. the product in the 10th year.

- Watch Video Solution

207. 25 trees are planted in a straight line 5 metre apart from each other. To water them the gardener must bring water for each tree separately from a well 10 metre from the first tree in line with the trees.

Let d be the distance we have to cover in order to water all the trees beginning with the first if he starts from the well.Find sum of digits of d
208. A man is employed to count Rs. 10710. He counts at the rate of Rs.

180 per minute for half an hour. After this he counts at the rate of Rs. 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.

- Watch Video Solution

209. A piece of equipment cost a certain factory Rs. 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on . what will be its value at the end of10 year, all percentages applying to the original cost?

- Watch Video Solution

210. A farmer buys a used tractor for Rs. 12000 . He pays Rs. 6000 cash and agrees to pay the remaining balance in annual instalments of Rs. 500 plus 12% interest on the unpaid amount. How much the tractor cost him?

- Watch Video Solution

211. Shamshad Ali buys a scooter for Rs. 22000 . He pays Rs. 4000 cash and agrees to pay the balance in annual instalments of Rs. 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him?

- Watch Video Solution

212. the income of a person is Rs. 300,000 in the first year and he receivers in increase of Rs. 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
213. A man starts repaying a loan as first instalment of Rs. 100. If he increases the instalments by Rs. 5 every month, what amount he will pay in the 30th instalment?

- Watch Video Solution

214. A man accepts a position with an initial salary of Rs. 5200 per month. It is understood that the will receive an automatic increase of Rs. 320 in the very next month and each month thereafter. Find his salary for the tenth month What is his total earnings during the first year?

- Watch Video Solution

215. In a cricket team tournament 16 teams participated. A sum of Rs 8000 is to be awarded among themselves as prize money. If the last place team is awarded Rs 275 in prize money and the award increases by the same amount for successive finishing places, how much amount will the first place team receive?

Watch Video Solution

216. A man saved Rs. 66000 in 20 years. In each succeeding year after the first year he saved Rs. 200 more than what he saved in the previous year. How much did he save in the first year?

- Watch Video Solution

217. Write the common difference of an A.P. whose nth term is $x n+y$.
218. Write the common difference of an A.P. the sum of whose first n terms is $\frac{P}{2} n^{2}+Q n$

- Watch Video Solution

219. If the sum of n terms of an A.P. is $2 n^{2}+3 n$ then write its nth term.

- Watch Video Solution

220. If the sums of n terms of two arithmetic progressions are in the ratio $2 n+5: 3 n+4$, then write the ratio of their $m t h$ term.

- Watch Video Solution

221. Find the sum of the first n odd numbers
222. Write the sum of first n even natural numbers.

- Watch Video Solution

223. Write the value of n for which $n t h$ terms of the A.P.s $3,10,17$. And 63,65,67. are equal.

(D) Watch Video Solution

224. if $m t h$ term of an A.P. is n and $n t h$ term is m, then write its $m+n t h$ term.

- Watch Video Solution

225. If the sums of n terms of two A.P.s are in ratio $(3 n+2):(2 n+3)$, find the ratio of their 12th terms.
226. If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
A. 87
B. 88
C. 89
D. 90

Answer: C

- Watch Video Solution

227. If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of $p+q$ terms will be
228. If the sum of n terms of an A.P. be $3 n^{2}-n$ and its common difference is 6 , then its first term is
A. 2
B. 3
C. 1
D. 4

Answer: A

- Watch Video Solution

229. Sum of all two digit numbers which when divided by 4 yield unity as remainder is.

- Watch Video Solution

230. There are n A.M.s between 3 and 17. The ratio of the last mean to the first mean is $3: 1$. Find the value of n.

- Watch Video Solution

231. If S_{n} denotes the sum of first n terms of an A.P. $<a_{n}>$ such that $\frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}}$, then $\frac{a_{m}}{a_{n}}=$ a. $\frac{2 m+1}{2 n+1}$ b. $\frac{2 m-1}{2 n-1}$ c. $\frac{m-1}{n-1}$ d. $\frac{m+1}{n+1}$

- Watch Video Solution

232. The first and last terms of an A.P. are 1 and 11 . If the sum of its terms is 36 then the number of terms will be
a. 5 b. 8 c. 6 d. 7

- Watch Video Solution

233. If the sum of n terms of an A.P., is $3 n^{2}+5 n$ then which of its terms is $164 ?$
a. $26 t h$ b. $27 t h$ c. $28 t h \mathrm{~d}$. none of these

- Watch Video Solution

234. If the sum of n terms of an A.P. is $2 n^{2}+5 n$, then its nth term is a. $4 n-3$ b. $3 n-4$ c. $4 n+3$ d. $3 n+4$

- Watch Video Solution

235. If $a_{1}, a_{2}, a_{3},---, a_{n}$ are in A.P with common difference d (where $d \neq 0$) , then the sum of series. $\sin d\left(\cos e c a_{1} \cos e c a_{2}+\cos e c a_{2} \cos e c a_{3}+--+\cos e c a_{n-1} \cos e c a_{n}\right)$ is equal to $\cot a_{1}-\cot a_{n}$
236. If the arithmetic progression whose common difference is nonzero the sum of first $3 n$ terms is equal to the sum of next n terms. Then, find the ratio of the sum of the $2 n$ terms to the sum of next $2 n$ terms.

- Watch Video Solution

237. Find the four numbers in A.P., whose sum is 50 and in which the greatest number Is 4 times the least.

- Watch Video Solution

238. If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3:29 then the value of n is
a. 10 b. 12
c. 13 d. 14
239. Let S_{n} denote the sum of n terms of an AP whose first term is a . If common difference d is given by $d=S n-k S_{n-1}+S_{n-2}$, then k is :

- Watch Video Solution

240. The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by
$\frac{l^{2}-a^{2}}{k-(l+a)}$, then $k=$ (a) $S($ (b) $2 S$ (c) $3 S$ (d) none of these

- Watch Video Solution

241. If the sum of first n even natural numbers is equal to k times the sum of first n odd natural number then $k=$
a. $\frac{1}{n}$ b. $\frac{n-1}{n}$ c. $\frac{n+1}{2 n}$ d. $\frac{n+1}{n}$
242. If the first second and last term of an A.P. are a, b, and $2 a$ respectively then its sum is
a. $\frac{a b}{2(b-a)}$ b
b. $\frac{a b}{b-a}$
c. $\frac{3 a b}{3(b-a)}$ d. none of these

(Watch Video Solution

243. If S_{1} is the sum of an AP of ' n ' odd number of terms and S_{2} be the sum of the terms of series in odd places of the same AP then $\frac{S_{1}}{S_{2}}=$

- Watch Video Solution

244. If in an A.P, $S_{n}=n^{2} p$ and $S_{m}=m^{2} p$, then prove that S_{p} is equal to p^{3}
245. If in an A.P., the pth term is q and $(p+q)^{t h}$ term is zero then the $q^{\text {th }}$ term is
a. $-p$ b. p c. $p+q$ d. $p-q$

- Watch Video Solution

246. The 10th common term between the A.P.s $3,7,11,15$, and $1,6,11,16$,.. is a. 191 b. 193 c. 211 d . none of these

- Watch Video Solution

247. If in an A.P. $S_{n}=n^{2} q$ and $S_{m}=m^{2} q$, where S_{r} denotes the sum of r terms of the A.P., then S_{q} equals
a. $\frac{q^{3}}{2}$ b. $m n q$ c. q^{3} d. $\left(m^{2}+n^{2}\right) q$

- Watch Video Solution

248. Let S_{n} denote the sum of the first n tem of an A.P. If $S_{2 n}=3 S_{n}$ then prove that $\frac{S_{3 n}}{S_{n}}=6$.
(D) Watch Video Solution
