©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS

(ENGLISH)

BRIEF REVIEW OF CARTESIAN SYSTEM

OF RECTANGULAR COORDINATES

Others

1. If the two vertices of an equilateral triangle be $(0,0),(3, \sqrt{3})$, find the third vertex.

D Watch Video Solution

2. Find the coordinates of the circumcentre of
the triangle whose vertices are $(8,6),(8-2)$ and $(2,-2)$ Also, find its circum-radius.

D Watch Video Solution

3. Find the distance between the points : $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$

D Watch Video Solution

4. Find the area of the quadrilateral $A B C D$

$$
\begin{array}{lccc}
\text { whose vertices are respectively } \\
A(1,1), B(7,-3), C(12,2) & \text { and } D(7,21)
\end{array}
$$

5. Prove that the points
$(a, b+c),(b, c+a) a n d(c, a+b)$ are collinear.

- Watch Video Solution

6. Let the opposite angular points of a square
be $(3,4) \operatorname{and}(1,-1)$. Find the coordinates of the remaining angular points.
7. Prove that the area of the triangle whose vertices are
$(t, t-2),(t+2, t+2) \operatorname{and}(t+3, t)$
independent of t.

D Watch Video Solution

8. If the axes are shifted to the point $(1,-2)$
without rotation, what do the following
equations become? $2 x^{2}+y^{2}-4 x+4 y=0$
$y^{2}-4 x+4 y+8=0$
9. Shift the origin to a suitable point so that the equation $y^{2}+4 y+8 x-2=0$ will not contain term of y and the constant term.

- Watch Video Solution

10. For what value of k are the points

$$
\begin{aligned}
& (k, 2-2 k) \quad(k+1,2 k) \quad \text { and } \\
& (-4-k, 6-2 k) \text { are collinear? }
\end{aligned}
$$

11. If the coordinates of the mid-points of the sides of a triangle are
$(1,1),(2,-3) \operatorname{and}(3,4)$. Find its (i) centroid
(ii) in-centre.

D Watch Video Solution

12. STATEMENT-1 : Two bodies of mass M and
$2 M$ released from rest and they move towards
each other due to their mutual gravitational force of attraction and collide at mid point.

STATEMENT-2 : If the total mechanical energy
of a body is zero than its linear momentum is
necessarily non zero at any point other than reference point.

STATEMENT-3 : The linear momentum of the bob of a simple pendulum suspended by the roof of a car accelerating on a horizontal road increases due to tension in the string of the pendulum.

D Watch Video Solution

13. Prove that the area of a triangle is invariant under the translation of the axes.

D Watch Video Solution

14. Find the point to which the origin should be shifted so that the equation
$y^{2}-6 y-4 x+13=0$ is transformed to the
form $y^{2}+A x=0$.

D Watch Video Solution
15. $A B$ is a variable line sliding between the coordinate axes in such a way that A lies on the x -axis and B lies on the y -axis. If P is a variable point on $A B$ such that $P A=b, P b=a$, and $A B=a+b$, find the equation of the locus of P.

- Watch Video Solution

16. A point moves so that the sum of its distances from $(a e, 0) \operatorname{and}(-a e, 0)$ is $2 a$,
prove that the equation to its locus is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $b^{2}=a^{2}\left(1-e^{2}\right)$.

D Watch Video Solution

17. A point moves so that the sum of its distances from $(a e, 0) a n d(-a e, 0)$ is $2 a$, prove that the equation to its locus is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $b^{2}=a^{2}\left(1-e^{2}\right)$.

- Watch Video Solution

18. Find the equation of the locus of a point which moves such that the ratio of its distances from $(2,0) \operatorname{and}(1,3)$ is $5: 4$.

D Watch Video Solution

19. Find the equation to the locus of a point equidistant from the points
$A(1,3) \operatorname{and} B(-2,1)$.
20. The sum of the squares of the distances of a moving point from two fixed points $(a, 0) \operatorname{and}(-a, 0)$ is equal to a constant quantity $2 c^{2}$. Find the equation to its locus.

D Watch Video Solution

21. Find the locus of a point, such that the join
of $(-5,1)$ and $(3,2)$ subtends a right angle at the moving point.
22. Find the locus of a point such that the sum
of its distances from the points
$(0,2)$ and $(0,-2)$ is 6.

D Watch Video Solution

23. Find the locus of the mid-point of the portion of the line $x \cos \alpha+y \sin \alpha=p$ which is intercepted between the axes.
24. A common test to find the genotype of a hybrid is by

D Watch Video Solution

25. Show that four points
$(0,-1),(6,7),(-2,3) \operatorname{and}(8,3)$ are the
vertices of a rectangle. Also, find its area.

D Watch Video Solution
26. If the segments joining the points
$A(a, b)$ and $B(c, d)$ subtends an angle θ at
the origin,
prove that
$\cos \theta=\frac{a c+b d}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}$

- Watch Video Solution

27. The vertices of a triangle are
$A(1,1), B(4,5)$ and $C(6,13)$. Find $\cos A$.

D Watch Video Solution

28. If the vertices of a triangle having integral coordinates . Prove that triangle can't be equileteral.

D Watch Video Solution

29. If the coordinates of two points A and B are $(3,4)$ and $(5,-2)$, respectively, find the coordinates of any point P if $P A=P B$. Area of $P A B$ is 10 sq. units.
30. The coordinates of A, B, C are
$(6,3),(-3,5),(4,-2)$, respectively, and P
is any point (x, y). Show that the ratio of the area of $P B C$ to that of $A B C$ is $\frac{|x+y-2|}{7}$.

- Watch Video Solution

31. Find the coordinates of points lying on the
line joining $P(3,-4)$ and $Q(-2,5)$ that is twice as far from P as Q
32. Determine the ratio in which the line
$3 x+y-9=0$ divides the segment joining the points $(1,3)$ and (2, 7).

(Watch Video Solution

33. Prove that: $(4,-1),(6,0),(7,2)$ and
$(5,1)$ are the vertices of a rhombus. Is it a square?

D Watch Video Solution

34. if the coordinates of the mid points of the

Sides of a triangle are $(1,2),(0,-1)$ and
$(2,-1)$.Find the coordinates of its vertices :

- Watch Video Solution

35. Two vertices of a triangle are
$(3,-5) \operatorname{and}(-7,4)$. If its centroid is
$(2,-1)$, find the third vertiex.

- Watch Video Solution

36. If the line segment joining the points
$P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ subtends an angle α at the origin O , prove that
$O P \dot{O} Q \cos \alpha=x_{1} x_{2}+y_{1} y_{2}$.

- Watch Video Solution

37.

Four
points
$A(6,3), B(-3,5), C(4,-2)$ and $D(x, 3 x)$
are given in such a way that $\frac{\Delta D B C}{\triangle A B C}=\frac{1}{2}$,find x
$A(2,0), B(9,1), C(11,6)$ and $D(4,4) \quad$ are the vertices of a quadrilateral $A B C D$. Determine whether $A B C D$ is a rhombus or not.

- Watch Video Solution

39. Find the coordinates of the centre of the circle inscribed in a triangle whose angular points are $(-36,7),(20,7)$ and $(0,-8)$.

Watch Video Solution

40. The base of an equilateral triangle with
side $2 a$ lies along the y -axis such that the mid point of the base is at the origin. Find the vertices of the triangle.

- Watch Video Solution

41. Find the distance between
$P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ when i. $P Q$ is
parallel to the y-axis ii. $P Q$ is parallel to the x axis.

D Watch Video Solution

42. Find a point on the x-axis, which is equidistant from the point $(7,6)$ and $(3,4)$.

- Watch Video Solution

43. Find the equation to the locus of a point which moves so that the sum of its distances
from $(3,0)$ and $(-3,0)$ is less than 9.

- Watch Video Solution

44. Find the locus of the point of intersection
of \quad lines $\quad x \cos \alpha+y \sin \alpha=a \quad$ and
$x \sin \alpha-y \cos \alpha=b(\alpha$ is a variable).

- Watch Video Solution

45. A rod of length l slides with its ends on
two perpendicular lines. Find the locus of its
midpoint.

- Watch Video Solution

46. If O is the origin and Q is a variable points
on $x^{2}=4 y$. Find the locus of the mid pint of
OQ.

- Watch Video Solution

47. Find the locus of a point equidistant from
the point $(2,4)$ and the y-axis.
48. Find the locus of a point such that the sum of its distances from the points $(0,2) \operatorname{and}(0,-2)$ is6.

- Watch Video Solution

49. Find the locus of a point which is equidistant from $(1,3)$ and x-axis.

- Watch Video Solution

50. Find the locus of a point which moves such that its distance from the origin is three times its distance from x-axis.

D Watch Video Solution

51. Find the locus of a point such that the line segments having end points $(2,0)$ and $(-2,0)$ subtend a right angle at that point.
52. If $A(-1,1)$ and $B(2,3)$ are two fixed points, find the locus of a point P so that the area of $\triangle P A B=8 s q$. units.

- Watch Video Solution

53. If O is the origin and Q is a variable point on $y^{2}=x$. Find the locus of the mid point of $O Q$.
54. At what point should the origin be shifted if the coordinates of a point $(4,5)$ become $(-3,9) ?$

- Watch Video Solution

55. What does the equation
$(x-a)^{2}+(y-b)^{2}=r^{2}$ become when the axes are transferred to parallel axes through
the pint $(a-c, b)$?
56. What does the equation
$(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0$ become if the origin is shifted to the point $\left(\frac{a b}{a-b}, 0\right)$ without rotation?

D Watch Video Solution

57. Find what the following equation become when the origin is shifted to the point (1,1):
$x^{2}+x y-3 x-y+2=0$
58. Find what the following equation become when the origin is shifted to the point $(1,1)$: $x y-x-y+1=0$

- Watch Video Solution

59. Find what the following equation become when the origin is shifted to the point $(1,1)$:

$$
x^{2}-y^{2}-2 x+2 y=0
$$

60. Find what the following equation become
when the origin is shifted to the point (1,1):
$x y-y^{2}-x+y=0$

D Watch Video Solution

61. Find the point to which the origin should
be shifted so that the equation
$y^{2}-6 y-4 x+13=0$ is transferred to the
form $y^{2}+A x=0$

- Watch Video Solution

62. Find what the following equations become when the origin is shifted to the point (1,1):
$x^{2}+x y-3 y^{2}-y+2=0$

D Watch Video Solution

63. Find what the following equations become
when the origin is shifted to the point (1,1):

$$
x y-x-y+1=0
$$

64. Find what the following equations become
when the origin is shifted to the point $(1,1)$:
$x y-y^{2}-x+y=0$

- Watch Video Solution

65. Find what the following equations become
when the origin is shifted to the point $(1,1)$:
$x^{2}-y^{2}-2 x+2 y=0$
66. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree term: $y^{2}+x^{2}-4 x-8 y+3=0$

D Watch Video Solution

67. Find the point to which the origin should
be shifted after a translation of axes so that
the following equations will have no first degree term: $x^{2}+y^{2}-5 x+2 y-5=0$
68. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree term: $x^{2}-12 x+4=0$

D Watch Video Solution

69. Verify that the area of the triangle with vertices $(4,6),(7,10)$ and $(1,-2)$ remains invariant
under the translation of axes when the origin
is shifted to the point $(-2,1)$.

D Watch Video Solution

70. The vertices of a triangle are
$O(0,0), A(a, 0)$ and $B(0, b)$. Write the coordinates of its circumcentre.

D Watch Video Solution
71. Write the coordinates of the orthocentre of
the triangle formed by points $(8,0),(4,6)$ and
$(0,0)$

- Watch Video Solution

72. Three vertices of a parallelogram, taken in order, are ($-1,-6$), (2,-5) and (7,2). Write the coordinates of its fourth vertex.
73.

If
the
points
$(a, 0),\left(a t 1^{2}, 2 a t_{1}\right)$ and $\left.a t 2^{2}, 2 a t_{2}\right)$ are collinear, write the value of $t_{1} t_{2}$.

- Watch Video Solution

74. Write the co ordinates of the circumcentre of a triangle whose centroid and orthocenter are at $(3,3)$ and $(-3,5)$ respectively
75. Write the coordinates of the incentre of the triangle having its vertices at (0,0), (5,0) and (0,12).

D Watch Video Solution

76. If the points $(1,-1),(2,-1)$ and $(4,-3)$ are the mid points of the sides of a triangle then write the coordinates of its centroid.

D Watch Video Solution
77. Write the area of the triangle having vertices at $(a, b+c),(b, c+a),(c, a+b)$.

D Watch Video Solution

