©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

HYPERBOLA

Others

1. Find the equation of the hyperbola whose foci
are $(8,3)$ and $(0,3)$ and eccentricity is $\frac{4}{3}$.
2. Show that the set all points such that the difference of their distances from
$(4,0) \operatorname{and}(-4,0)$ is always equal to 2 represents a hyperbola.

(D) Watch Video Solution

3. If eande' the eccentricities of a hyperbola and its conjugate, prove that $\frac{1}{e^{2}}+\frac{1}{e^{2}}=1$.
4. Find the locus of the point of intersection of the lines
$\sqrt{3 x}-y-4 \sqrt{3 \lambda}=0 a n d \sqrt{3} \lambda x+\lambda y-4 \sqrt{3}=0$

for different values of λ.

D Watch Video Solution

5. Show that the equation 9
$x^{2}-16 y^{2}-18 x+32 y-151=0$ represents a
hyperbola. Find the coordinates of the centre,
lengths of the axes, eccentricity, latus-rectum,
coordinates of foci and vertices, equations of the directrices of the hyperbola.

D Watch Video Solution

6. For the following hyperbolas find the lengths
of transverse and conjugate axes, eccentricity
and coordinates of foci and vertices, length of
the latus-rectum, equations of the directrices:
$6 x^{2}-9 y^{2}=1443 x^{2}-6 y^{2}=-18$

- Watch Video Solution

7.

Suppose you are sitting on an accelrating trolley car.
(i) Find the pseudo force action on the block of mass m placed on the trolley car.

If the block is placed (or moved) outside the trolley car, and an external force F acts in horizontal direction.
(ii) Find the pseudo force acting on the block as
viewed by the observer.
(iii) Find the acceleration of the block as seen by
the obersever

D Watch Video Solution

8. Find the equation of the hyperbola whose foci
are $(6,4)$ and $(-4,4)$ and eccentricity is 2 .
9. Find the equation of the hyperbola, the length of whose latusrectum is 8 and eccentricity is $3 / \sqrt{5}$.

- Watch Video Solution

10. The genes, which remains confined to differential region of Y-chromosome, are
11. Find the equation of the hyperbola, referred to its principal axes of coordinates, in the following cases:

Verticesat $(\pm 5,0), \operatorname{Fociat}(\pm 7,0)$
$\operatorname{Verticesat}(0, \pm 7), e=\frac{4}{3}$

D Watch Video Solution

12. Show that the equation
$x^{2}-2 y^{2}-2 x+8 y-1=0$ represents a hyperbola.
13. If P is any point on the hyperbola whose axis are equal, prove that $S P \dot{S}^{\prime} P=C P^{2}$.

D Watch Video Solution

14. Find the equation of the hyperbola whose
conjugate axis is 5 and the distance between
the foci is 13 .
15. The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. Find the equation of the hyperbola, if its eccentricity is 2 .

D Watch Video Solution

16. If the distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$, then obtain its equation.

- Watch Video Solution

17. The equation of the directrix of a hyperbola is $x-y+3=0$. Its focus is $(-1,1)$ and eccentricity 3 . Find the equation of the hyperbola.

D Watch Video Solution

18. Find the equation of the hyperbola whose :
focus is $(0,3)$ directrix is $x+y-1=0$ and eccentricity $=2$.
19. Find the equation of the hyperbola whose :
focus is $(1,1)$ directrix is $3 x+4 y+8=0$ and eccentricity $=2$

- Watch Video Solution

20. Find the equation of the hyperbola whose :
focus is $(1,1)$ directrix is $2 x+y=1$ and eccentricity $=\sqrt{3}$
21. Find the equation of the hyperbola whose :
focus is $(2,-1)$ directrix is $2 x+3 y=1$ and eccentricity $=2$

(Watch Video Solution

22. Find the equation of the hyperbola whose :
focus $(a, 0)$, directrix is $2 x-y+a=0$ and eccentricity $=\frac{4}{3}$

D Watch Video Solution

23. Find the equation of the hyperbola whose :
focus is $(2,2)$ directrix is $x+y=9$ and eccentricity $=2$.

- Watch Video Solution

24. Find the eccentricity, coordinates of the foci ,equations of directrices and length of the latus rectum of the hyperbola : $9 x^{2}-16 y^{2}=144$
25. Find the eccentricity, coordinates of the foci, equations of directrices and length of the latus rectum of the hyperbola $4 x^{2}-3 y^{2}=36$

(D) Watch Video Solution

26. Find the eccentricity, coordinates of the foci ,equations of directrices and length of the latus rectum of the hyperbola $2 x^{2}-3 y^{2}=5$.

D Watch Video Solution

27. Find the eccentricity, coordinates of the foci, equations of directrices and length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$

D Watch Video Solution

28. Find the eccentricity, coordinates of the foci, equations of directrices and length of the latus rectum of the hyperbola $3 x^{2}-y^{2}=4$
29. Find the axes, eccentricity, latus rectum and the coordinates of the foci of the hyperbola $25 x^{2}-36 y^{2}=225$.

- Watch Video Solution

30. Find the centre, eccentricity, foci and directrices of the hyperbola
$16 x^{2}-9 y^{2}+32 x+36 y-164=0$

D Watch Video Solution

31. Find the centre, eccentricity, foci and directrices of the hyperbola : $x^{2}-y^{2}+4 x=0$

D Watch Video Solution

32. Find the centre, eccentricity, foci and directrices of the hyperbola
$x^{2}-3 y^{2}-2 x=8$.

- Watch Video Solution

33. Find the equation of the hyperbola, referred to its principal axes as axes of coordinates in the following cases: a. The distance between the foci $=16$ and eccentricity $=\sqrt{2}$ b. Conjugate axis is 5 and the distance between foci $=3 \mathrm{c}$.

Conjugate axis is 7 and passes through the point (3,-2).

D Watch Video Solution

34. Find the eccentricity of the hyperbola, the length of whose conjugate axis is $\frac{3}{4}$ of the
length of transverse axis.

D Watch Video Solution

35. Find the equation of the hyperbola whose:
focus is at $(5,2)$ vertex at $(4,2)$ and centre at
$(3,2)$

D Watch Video Solution

36. Find the equation of the hyperbola whose:
focus is at $(4,2)$ and centre at $(6,2), \mathrm{e}=2$.
37. In each of the following find the equations of the hyperbola satisfying the given condition: Vertices $(\pm 2,0)$, foci $(\pm 3,0)$

D Watch Video Solution

38. Find the equations of the hyperbola satisfying the given conditions :Vertices
$(0, \pm 5)$, foci $(0, \pm 8)$
39. In each of the following find the equations of the hyperbola satisfying he given condition: vertices $(0, \pm 3)$ foci $(0, \pm 5)$

- Watch Video Solution

40. In each of the following find the equations
of the hyperbola satisfying he given condition:
foci $(\pm 5,0)$ transverse axis $=8$

- Watch Video Solution

41. In each of the following find the equations of the hyperbola satisfying he given condition: foci $(0, \pm 13)$ conjugate axis $=24$

- Watch Video Solution

42. In each of the following find the equations
of the hyperbola satisfying the given condition:
foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum $=8$

- Watch Video Solution

43. In each of the following find the equations of the hyperbola satisfying the given condition: foci $(\pm 4,0)$ the latus rectum $=12$

D Watch Video Solution

44. In each of the following find the equations of the hyperbola satisfying the given condition:
vertices $(0, \pm 6), e=\frac{5}{3}$

D Watch Video Solution

45. In each of the following find the equations of the hyperbola satisfying the given condition: foci $(0, \pm \sqrt{10})$ passing through $(2,3)$

- Watch Video Solution

46. In each of the following find the equations
of the hyperbola satisfying the given condition:
foci $(0, \pm 12)$ latus rectum $=36$

D Watch Video Solution
47. Write the eccentricity of the hyperbola $9 x^{2}-16 y^{2}=144$.

D Watch Video Solution

48. Find the eccentricity of the hyperbola whose latusrectum is half of its transverse axis.

D Watch Video Solution

49. Write the coordinates of the foci of the hyperbola $9 x^{2}-16 y^{2}=144$.

Watch Video Solution

50. Write the equation of the hyperbola of eccentricity $\sqrt{2}$ if it is known that the distance between its foci is 16.

D Watch Video Solution

51. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide write the value of b^{2}.
52. Write the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$.

D Watch Video Solution

53. If the latus rectum through one focus subtends a right angle at the farther vertex of the hyperbola then its eccentricity is

- Watch Video Solution

54. Write the distance between the directrices of the hyperbola $x=8 \sec \theta, y=8 \tan \theta$.

- Watch Video Solution

55. Write the equation of the hyperbola whose vertices are $(\pm 3,0)$ and foci at $(\pm 5,0)$

(D) Watch Video Solution

56. If e_{1} and e_{2} are respectively the eccentricities of the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{4}=1$ and the hyperbola
$\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, then write the value of
$2 e_{1}^{2}+e_{2}^{2}$.

- Watch Video Solution

57. Equation of the hyperbola whose vertices are $(\pm 3,0)$ and foci at $(\pm 5,0)$ is a.
$16 x^{2}-9 y^{2}=144 \quad$ b. $9 x^{2}-16 y^{2}=144 \quad$ c.
$25 x^{2}-9 y^{2}=225$ d. $9 x^{2}-25 y^{2}=81$

D Watch Video Solution
58. If e_{1} and e_{2} are respectively the eccentricities
of the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{4}=1$ and the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, then the relation between e_{1} and e_{2} is a. $2 e_{1}^{2}+e_{2}^{2}=3$ b. $e_{1}^{2}+2 e_{2}^{2}=3$ c. $2 e_{1}^{2}+e_{2}^{2}=3$ d. $e_{1}^{2}+3 e_{2}^{2}=2$

D Watch Video Solution

59. The distance between the directrices of the
hyperbola $x=8 \sec \theta, y=8 \tan \theta, \quad$ a. $8 \sqrt{2}$ b.
$16 \sqrt{2}$ c. $4 \sqrt{2}$ d. $6 \sqrt{2}$
60. The equation of the conic with focus at ($1,-1$)
directrix along $x-y+1=0$ and eccentricity
$\sqrt{2}$ is a. $x y=1$ b. $2 x y+4 x-4 y-1=0$ c.
$x^{2}-y^{2}=1$ d. $2 x y-4 x+4 y+1=0$

- Watch Video Solution

61. The eccentricity of the conic
$9 x^{2}-16 y^{2}=144$ is a. $\frac{5}{4}$ b. $\frac{4}{3}$ c. $\frac{4}{5}$ d. $\sqrt{7}$
62. A point moves in a plane so that its distance
$P A$ and $P B$ from who fixed points A and B in the plane satisfy the relation
$P A-P B=k(k \neq 0)$ then the locus of P is a.
a hyperbola b. a branch of the locus of P is c. a parabola d. an ellipse

D Watch Video Solution

63. The eccentricity of the hyperbola whose
latus rectum is half of its transverse axis is a.
$\frac{1}{\sqrt{2}}$ b. $\sqrt{\frac{2}{3}}$ c. $\sqrt{\frac{3}{2}}$ d. none of these

D Watch Video Solution

64. The eccentricity of the hyperbola
$x^{2}-4 y^{2}=1$ is a. $\frac{\sqrt{3}}{2}$ b. $\frac{\sqrt{5}}{2}$ c. $\frac{2}{\sqrt{3}}$ d. $\frac{2}{\sqrt{5}}$

D Watch Video Solution

65. The difference of the focal distances of anypoint on the hyperbola is equal to a. Length
of the conjugate axis b. Eccentricity c. Length of the transverse axis d. Latus rectum

D Watch Video Solution

66. The foci of the hyperbola $9 x^{2}-16 y^{2}=144$
are a. $(\pm 4,0) \quad$ b. $(0, \pm 4) \quad$ c. $(\pm 5,0) \quad$ d.
$(0, \pm 5)$
67. The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$ then equation of the hyperbola is a. $x^{2}+y^{2}=32$
$x^{2}-y^{2}=16$ c. $x^{2}+y^{2}=16$ d. $x^{2}-y^{2}=32$

D Watch Video Solution

68. If e_{1} is the eccentricity of the conic
$9 x^{2}+4 y^{2}=36$ and e_{2} is the eccentricity of the
conic $9 x^{2}-4 y^{2}=36$ then a. $e_{1}^{2}-e_{2}^{2}=2$ b.
$e_{2}^{2}-e_{1}^{2}=2$ c. $2<e_{2}^{2}-e_{1}^{2}<3$ d. $e_{1}^{2}-e_{2}^{2}>3$
69. If the eccentricity of the hyperbola $x^{2}-y^{2} \sec ^{2} \alpha=5$ is $\sqrt{3}$ times the eccentricity the ellipse $x^{2} \sec ^{2} \alpha+y^{2}=25$ then $\alpha=$ a. $\frac{\pi}{6}$
b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$

D Watch Video Solution

70. The equation of the hyperbola whose foci are $(6,4)$ and $(-4,4)$ and eccentricity 2 is a.

$$
\begin{equation*}
\frac{(x-1)^{2}}{25 / 4}-\frac{(y-4)^{2}}{75 / 4}=1 \tag{b.}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{(x+1)^{2}}{25 / 4}-\frac{(y+4)^{2}}{75 / 4}=1 \\
& \frac{(x-1)^{2}}{75 / 4}-\frac{(y-4)^{2}}{25 / 4}=1 \text { d. none of these }
\end{aligned}
$$

D Watch Video Solution

71. The length of the straight line $x-3 y=1$ intercepted by the hyperbola $x^{2}-4 y^{2}=1$ is a.
$\frac{6}{\sqrt{5}}$ b. $3 \sqrt{\frac{2}{5}}$ c. $6 \sqrt{\frac{2}{5}}$ d. none of these

D Watch Video Solution

72. The latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$ is a. $16 / 3$ b. $32 / 3$ c. $8 / 3 \mathrm{~d}$. $4 / 3$

- Watch Video Solution

73. The foci of the hyperbola $2 x^{2}-3 y^{2}=5$ are a. $(\pm 5 \sqrt{6}, 0)$ b. $(\pm 5 / 6,0)$ c. $(\pm \sqrt{5} / 6,0)$ d. none of these
74. The eccentricity of the hyperbola
$x=\frac{a}{2}\left(t+\frac{1}{t}\right), y=\frac{a}{2}\left(t-\frac{1}{t}\right)$ is a. $\sqrt{2} . \mathrm{b}$.
$\sqrt{3}$ c. $2 \sqrt{3}$ d. $3 \sqrt{2}$

D Watch Video Solution

75. The equation of the hyperbola whose centre is $(6,2)$ one focus is $(4,2)$ and of eccentricity 2 is $\quad(\mathrm{A}) \quad 3(x-6)^{2}-(y-2)^{2}=3$
$(x-6)^{2}-3(y-2)^{2}=1$
$(x-6)^{2}-2(y-2)^{2}=1$
$2(x-6)^{2}-(y-2)^{2}=1$
76. The locus of the point of intersection of the

lines

$\sqrt{3} x-y-4 \sqrt{3} \lambda=0$ and $\sqrt{3} \lambda x+\lambda y-4 \sqrt{3}=0$
is a hyperbola of eccentricity a. 1 b. 2 c. 3 d. 4

