©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

MATHEMATICAL INDUCTION

Others

1. Prove that for $n \in N, 10^{n}+3.4^{n+2}+5$ is divisible by 9 .

- Watch Video Solution

2. Prove by induction that the sum of the cubes of three consecutive natural numbers is divisible by 9 .
3. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by letting $a_{1}=3$ and $a_{k}=7 a_{k-1}$ for natural numbers $k, k \geq 2$. Show that $a_{n}=3.7_{n}-1$ for all $n \in N$.

- Watch Video Solution

4. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ is defined by letting $x_{1}=2$ and $x_{k}=\frac{x_{k-1}}{k}$ for all natural numbers $k, k \geq 2$ Show that $x_{n}=\frac{2}{n!}$ for all $n \in N$.

- Watch Video Solution

5. Show by the Principle of Mathematical induction that the sum S_{n}, of the nterms of the series $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2}+7^{2}+\ldots$. is given by $S_{n}=\left\{\frac{n(n+1)^{2}}{2}\right.$, if n is even , then $\frac{n^{2}(n+1)}{2}$, if n is odd
6. Prove that the number of subsets of a set containing n distinct elements is 2^{n} for all $n \in N$.

- Watch Video Solution

7. Using the principle of mathematical induction prove that :
$1.3+2.3^{2}+3.3^{3}++n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$ for all $n \in N$.

- Watch Video Solution

8. Prove by the principle of mathematical induction that for all $n \in N, n^{2}+n$ is even natural number.

- Watch Video Solution

9. Using the principle of mathematical induction prove that $1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}++\frac{1}{1+2+3++n}=\frac{2 r}{n+}$ for all $n \in N$

Watch Video Solution

10. Prove by induction that the sum $S_{n}=n^{3}+3 n^{2}+5 n+3$ is divisible by 3 for all $n \in N$.

D Watch Video Solution

11. Using the principle of mathematical induction prove that $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}++\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$ for all $n \in N$

- Watch Video Solution

12. Using the principle of mathematical induction. Prove that $\left(x^{n}-y^{n}\right)$ is divisible by $(x-y)$ for all $n \in N$.

D Watch Video Solution

13. Using the principle of mathematical induction prove that $41^{n}-14^{n}$ is a multiple of 27 .

- Watch Video Solution

14. Using the principle of mathematical induction, prove that $\left(2^{3 n}-1\right)$ is divisible by 7 for all $n \in N$

- Watch Video Solution

15. Using principle of mathematical induction prove that $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}}$ for all natural numbers $n \geq 2$.

- Watch Video Solution

16. Prove that: $1+2+3+\ldots .+n<\frac{(2 n+1)^{2}}{8}$ for all $n \in N$.
17. Prove that: $1^{2}+2^{2}+3^{2} \ldots .+n^{2}>\frac{n^{3}}{3}, n \in N$

- Watch Video Solution

18. A sequence $x_{0}, x_{1}, x_{2}, x_{3}, \ldots$ is defined by letting $x_{0}=5$ and $x_{k}=4+x_{k-1}$ for all natural number k. Show that $x_{n}=5+4 n$ for all $n \in N$ using mathematical induction..

- Watch Video Solution

19. Prove by the principle of mathematical induction that $n<2^{n}$ for all $n \in N$.

- Watch Video Solution

20. Prove by the principle of mathematical induction that for all $n \in N, 3^{2 n}$ when divided by 8 , the remainder is always 1 .

- Watch Video Solution

21. Using the principle of mathematical induction, prove that :
22. $2.3+2.3 .4++n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$ for all $n \in N$.

- Watch Video Solution

22. Prove the following by using the principle of mathematical induction
for all $n \in N: 1^{3}+2^{3}+3^{3}+\cdot \cdot+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

- Watch Video Solution

23. Prove that: $\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{n}\right)=(n+1)$ for all $n \in N$.

- Watch Video Solution

24. Using principle of MI prove that $2.7^{n}+3.5^{n}-5$ is divisible by 24

- Watch Video Solution

25. Prove by the principle of mathematical induction that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number for all $n \in N$.

- Watch Video Solution

26. For all positive integer n, prove that $\frac{n^{7}}{7}+\frac{n^{5}}{5}+\frac{2}{3} n^{3}-\frac{n}{105}$ is an integer
27. If $P(n)$ is the statement $2^{3 n}-1$. Is an integral multiple 7 , and if $P(r)$ is true, prove that $P(r+1)$ is true.

- Watch Video Solution

28. Let $P(n)$ be the statement $3{ }^{\wedge} \mathrm{n}>\mathrm{n}$. If $P(n)$ is true, $P(n+1)$ is also true.

- Watch Video Solution

29. If $\mathrm{P}(n)$ is the statement $n^{2}>100$, prove that whenever $P(r)$ is true, $P(r+1)$ is also true.

- Watch Video Solution

30. Prove by the principle of mathematical induction that for all $n \in N$: $1^{2}+2^{2}+3^{2}++n^{2}=\frac{1}{6} n(n+1)(2 n+1)$

- Watch Video Solution

31. Prove by the principle of mathematical induction that for all $n \in N$:
$1+4+7++(3 n-2)=\frac{1}{2} n(3 n-1)$

- Watch Video Solution

32. Prove by the principle of mathematical induction that: $n(n+1)(2 n+1)$ is divisible by 6 for all $n \in N$.

- Watch Video Solution

33. Prove by the principle of mathematical induction that for all $n \in N, n^{2}+n$ is even natural number.

- Watch Video Solution

35. Prove that $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$,for all natural number $n>1$.

- Watch Video Solution

36. Prove the following by using the principle of mathematical induction for all $n \in N:(2 n+7)<(n+3)^{2}$.

- Watch Video Solution

37. Prove by induction the inequality $(1+x)^{n} \geq 1+n x$ whenever x is positive and n is a positive integer.

- Watch Video Solution

38. If $P(n)$ is the statement $n^{3}+n$ is divisible 3 is the statement $P(3)$ true ? Is the statement $P(4)$ true?

- Watch Video Solution

39. If $P(n)$ is the statement $n(n+1)(n+2)$ is divisible is 12 prove that the statements $P(3)$ and $P(4)$ are true, but that $P(5)$ is not true.

- Watch Video Solution

40. Let $P(n)$ be the statement 7 divides $\left(2^{3 n}-1\right)$. What is $P(n+1)$?

- Watch Video Solution

41. If $P(n)$ is the statement $n(n+1)$ is even, then what is $P(3)$?

- Watch Video Solution

42. If $P(n)$ is the statement $n^{3}+n$ is divisible by 3 , prove that $P(3)$ is true but $P(4)$ is not true.

- Watch Video Solution

43. If $P(n)$ is the statement $n^{2}+n$ is even, and if $P(r)$ is true then $P(r+1)$ is true.

- Watch Video Solution

44. If $P(n)$ is the statement $2^{n} \geq 3 n$, and if $P(r)$ is true, prove that $P(r+1)$ is true.
45. Given an example of a statement $P(n)$ such that it is true of all $n \epsilon N$.

- Watch Video Solution

46. If $P(n)$ is the statement $n^{2}-n+41$ is prime. Prove that $P(1), P(2)$ and $P(3)$ are true. Prove also that $P(41)$ is not true.

- Watch Video Solution

47. Given an example of a statement $P(n)$ which is true for all $n \geq 4$ but $P(1), P(2)$ and $P(3)$ are not true. Justify your answer.

- Watch Video Solution

48. Prove by the principle of mathematical induction that for all $n \in N$:

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}++\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

(D) Watch Video Solution

49. Using principle of mathematical induction prove that $x^{2 n}-y^{2 n}$ is divisible by $x+y$ for all nbelongs $\rightarrow N$.

- Watch Video Solution

50. Prove by the principle of induction that for all $n N,\left(10^{2 n-1}+1\right)$ is divisible by 11 .

- Watch Video Solution

51. Prove by induction that $4+8+12++4 n=2 n(n+1)$ for all $n N$.

- Watch Video Solution

$\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots \ldots \cos \left(2^{n-1} \alpha\right)=\frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha} f$ or all $n \in N$

- Watch Video Solution

53. Let $U_{1}=1, U_{2}=1$ and $U_{n+2}=U_{n+1}+U_{n} f$ or $n \geq 1$. use mathematical induction to show that:
$U_{n}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\} f$ or all $n \geq 1$.

- Watch Video Solution

54. Prove the following by the principle of mathematical induction: $1+2+3++n=\frac{n(n+1)}{2} i e$, the sum o the first n natural numbers is $\frac{n(n+1)}{2}$.

- Watch Video Solution

55. Prove the following by the principle of mathematical induction:
$1^{2}+2^{2}+3^{2}++n^{2}=\frac{n(n+1)(2 n+1)}{6}$

- Watch Video Solution

56. Prove the following by the principle of mathematical induction:
$1+3+3^{2}++3^{n-1}=\frac{3^{n}-1}{2}$

- Watch Video Solution

57. Using the principle of mathematical induction, prove that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{(n+1)} .
$$

- Watch Video Solution

58. Prove the following by the principle of mathematical induction: $1+3+5++(2 n-1)=n^{2} i$.e. the sum of first n odd natural
numbers is n^{2}.

- Watch Video Solution

59. Prove the following by the principle of mathematical induction:

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}++\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4}
$$

(Watch Video Solution

60. Prove the following by the principle of mathematical induction:

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}
$$

- Watch Video Solution

61. Prove the following by the principle of mathematical induction:

$$
\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}
$$

62. Prove the following by the principle of mathematical induction:

$$
\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\ldots . .+\frac{1}{(4 n-1)(4 n+3)}=\frac{n}{3(4 n+3)}
$$

- Watch Video Solution

63. Prove the following by the principle of mathematical induction:
64. $2+2.22^{2}+3.2^{3}++n .2^{n}=(n-1) 2^{n+1}+2$

- Watch Video Solution

64. Prove the following by the principle of mathematical induction: $2+5+8+11++(3 n-1)=\frac{1}{2} n(3 n+1)$

- Watch Video Solution

65. Prove the following by the principle of mathematical induction:
$1.3+3.5++(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$

- Watch Video Solution

66. Prove the following by the principle of mathematical induction:
$1.2+2.3+3.4++n(n+1)=\frac{n(n+1)(n+2)}{3}$

- Watch Video Solution

67. Prove the following by the principle of mathematical induction:
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}++\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

- Watch Video Solution

68. Prove the following by the principle of mathematical induction: $1^{2}+3^{2}+5^{2}++(2 n-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right)$

- Watch Video Solution

69. Prove the following by the principle of mathematical induction:
$a+(a+d)+(a+2 d)++(a+(n-1) d)=\frac{n}{2}[2 a+(n-1) d]$

Watch Video Solution

70. Prove the following by the principle of mathematical induction: $5^{2 n}-1$ is divisible by 24 for all $n \in N$.

- Watch Video Solution

71. Prove the following by the principle of mathematical induction: $3^{2 n}+7$ is divisible by 8 for all $n \in N$.

- Watch Video Solution

72. Prove the following by the principle of mathematical induction:
$5^{2 n+2}-24 n-25$ is divisible 576 for all n
73. Prove the following by the principle of mathematical induction: $3^{2 n+2}-8 n-9$ is divisible 8 for all $n \in N$.

- Watch Video Solution

74. Prove the following by the principle of mathematical induction: $(a b)^{n}=a^{n} b^{n}$ for all $n \in N$.

- Watch Video Solution

75. Prove the following by using the principle of mathematical induction for all $n \in N: n(n+1)(n+5)$ is a multiple of 3 .

- Watch Video Solution

76. Prove the following by the principle of mathematical induction: $7^{2 n}+2^{3 n-3} .3^{n-1}$ is divisible 25 for all $n \in N$.

- Watch Video Solution

77. Prove the following by the principle of mathematical induction:
78. $7^{n}+3.5^{n}-5$ is divisible 24 for all $n \in N$.

- Watch Video Solution

78. Prove the following by the principle of mathematical induction: $11^{n+2}+12^{2 n+1}$ is divisible 133 for all $n \in N$.

- Watch Video Solution

79. Prove the following by the principle of mathematical induction: $n^{3}-7 n+3$ is divisible 3 for all $n \in N$.
80. Prove the following by the principle of mathematical induction: $1+2+2^{2} \ldots \ldots+2^{n}=2^{n+1}-1$ for all $n \in N$.

- Watch Video Solution

81. Prove the following by the principle of mathematical induction: $7+77+777++777++\ddot{n}-$ digits $7=\frac{7}{81}\left(10^{n+1}-9 n-10\right)$ for all $n \in N$

- Watch Video Solution

82. Prove the following by the principle of mathematical induction:
$\frac{n^{7}}{7}+\frac{n^{5}}{5}+2 \frac{n^{3}}{3}-\frac{n}{105}$ is a positive integer for all $n \in N$.

- Watch Video Solution

83. Prove the following by the principle of mathematical induction: $\frac{n^{11}}{11}+\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{62}{165} n$ is a positive integer for $n \in \mathbb{N}$.

- Watch Video Solution

84. Prove the following by the principle of mathematical induction: $\frac{1}{2} \tan \left(\frac{x}{2}\right)+\frac{1}{4} \tan \left(\frac{x}{4}\right)+\ldots+\left(\frac{1}{2^{n}}\right) \tan \left(\frac{x}{2^{n}}\right)=\left(\frac{1}{2^{n}}\right) \cot \left(\frac{x}{2^{n}}\right)-\operatorname{co}$ for all n belongs to N .

- Watch Video Solution

85. Prove the following by the principle of mathematical induction:

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)-----\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}
$$

for all natural numbers $n \geq 2$.

- Watch Video Solution

86. Prove the following by the principle of mathematical induction:
$\frac{(2 n)!}{2^{2 n}(n!)^{2}} \leq \frac{1}{\sqrt{3 n+1}}$ for all $n \in N$.

- Watch Video Solution

87. Prove the following by the principle of mathematical induction: $x^{2 n-1}+y^{2 n-1}$ is divisible by $x+y$ for all $n \in \mathbb{N}$.

- Watch Video Solution

88. Prove that: $\sin x+\sin 3 x++\sin (2 n-1) x=\frac{\sin ^{2} n x}{\sin x}$ for all $n \in \mathbb{N}$

- Watch Video Solution

89. Given

$$
a_{1}=\frac{1}{2}\left(a_{0}+\frac{A}{a_{0}}\right), a_{2}=\frac{1}{2}\left(a_{1}+\frac{A}{a_{1}}\right) \quad \text { and }
$$

$a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{A}{a_{n}}\right)$ for $n \geq 2$, where $a>0, A>0$. prove that
$\frac{a_{n}-\sqrt{A}}{a_{n}+\sqrt{A}}=\left(\frac{a_{1}-\sqrt{A}}{a_{1}+\sqrt{A}}\right) 2^{n-1}$.

- Watch Video Solution

90. Let $P(n)$ be the statement: $2^{n} \geq 3 n$. If $P(r)$ is true, show that $P(r+1)$ is true. Do you conclude that $P(n)$ is true for all $n \in N$

- Watch Video Solution

91. The distributive law from algebra states that for all real numbers $c, a 1$ and a2,we have $c\left(a_{1}+a_{2}\right)=c a_{1}+c a_{2}$ Use this law and mathematical induction to prove that,for all natural numbers, $n \geq 2$,if c, a_{1}, a_{2}, \ldots, an

$$
\begin{array}{lcl}
\text { are } \left.\begin{array}{c}
\text { any } \\
\\
c\left(a_{1}+a_{2}+\ldots .\right.
\end{array} \text { real } a_{n}\right)=c a_{1}+c a_{2}+\ldots .+c a_{n} &
\end{array}
$$

- Watch Video Solution

92. State First principle of mathematical induction

Watch Video Solution

93. Write the set of values of n for which the statement $P(n): 2 n<n$! is true.

- Watch Video Solution

94. Let us prove the following equality using the second principle: For any natural number $n, 1+3+\ldots+(2 n+1)=(n+1) 2$.

- Watch Video Solution

95. If $P(n): 2 \times 4^{2 n+1}-3^{3 n+1}$ is divisible by λ for all $n \in N$ is true, then find the value of λ.

- Watch Video Solution

96. If $x^{n}-1$ is divisible by $x-\lambda$, then the least prositive integral value of λ is 1 b. 3 c. 4 d. 2

Watch Video Solution

97. For all $n \in N, 3 \times 5^{2 n+1}+2^{3 n+1}$ is divisible by a. 19 b. 17 c. 23 d. 25

- Watch Video Solution

98. If $10^{n}+3 \times 4^{n+2}+\lambda$ is divisible by 9 or all natural numbers, then the least positive integral value of λ is
a. 5 b. 3 c. 7 d. 1

- Watch Video Solution

99. Let $P(n): 2^{n}<(1 \times 2 \times 3 \times \times n)$. Then the smallest positive integer for which $P(\mathrm{n})$ is true is

a. 1 b. 2 c. 3 d. 4

- Watch Video Solution

100. A student was asked to prove a statement by induction. He proved (i) $\mathrm{P}(5)$ is true and (ii) truth of $\mathrm{P}(\mathrm{n}) \Rightarrow$ truth of $\mathrm{P}(\mathrm{n}+1), \mathrm{n} \in \mathrm{N}$. On the basis of this, he could conclude that $P(n)$ is true

- Watch Video Solution

101. If $P(n): 49^{n}+16^{n}+\lambda$ is divisible by 64 for $n \in N$ is true, then the least negative integral value of λ is $a .-3 \mathrm{~b} .-2 \mathrm{c} .-1 \mathrm{~d} .-4$

- Watch Video Solution

