

India's Number 1 Education App

MATHS

BOOKS - RD SHARMA MATHS (ENGLISH)

QUADRATIC EQUATIONS

Others

1. The number of roots of the equation

$$rac{(x+2)(x-5)}{(x-3)(x+6)} = rac{x-2}{x+4}$$
 is

A. 1

B. null

C. null

D. null

Answer: A

Watch Video Solution

2. If lpha, eta are the roots of the equation $x^2+px+1=0; \gamma, \delta$ the roots of the

equation $x^2+qx+1=0$,

then

$$(lpha-\gamma)(lpha+\delta)(eta-\gamma)(eta+\delta)=$$

A.
$$q^2-p^2$$

B.
$$p^2-q^2$$

C.
$$p^2=q^2$$

D. none of these

Answer: A

3. The number of real solutions of

$$\left|2x-x^2-3
ight|=1$$
 is

4. The number of real roots of $\left(x^2+2x\right)^2-(x+1)^2-55=0$

5. If α, β are the roots of the equation

$$ax^2 + bx + c = 0,$$

then

$$rac{1}{alpha+b}+rac{1}{aeta+b}=$$

A.
$$\frac{c}{ab}$$

B.
$$\frac{a}{bc}$$

C.
$$\frac{b}{ac}$$

D. none of these

Answer: C

6. If lpha,eta are roots of the equation $x^2+3x+7=0,$ then 1/lpha+1eta is equal to

7/3 (b) -7/3 (c) 3/7 (d) -3/7

A.
$$7/3$$

$$B. - 7/3$$

D.
$$-3/7$$

Answer: D

7. The values of x satisfying

$$(\log)_3 ig(x^2 + 4x + 12ig) = 2$$
 are (a) $2, \ -4$ (b)

$$1, -3$$
 (c) $-1, 3$ (d) $-1, -3$

8. The complete set of values of k, for which the quadratic $x^2-kx+k+2=0$ has equal roots, consists of

A.
$$2 + \sqrt{12}$$

B.
$$2\pm\sqrt{12}$$

$$\mathsf{C.}\,2-\sqrt{12}$$

$$\mathsf{D.} - 2 - \sqrt{12}$$

Answer: B

Watch Video Solution

9. For the equation $\left|x^2\right|+\left|x\right|-6=0$, the sum of the real roots is (a) 1 (b) 0 (c) 2 (d) none of these

10. The equation of the smallest degree with real coefficients having 1+i as one of the roots is (a) $x^2+x+1=0$ (b) $x^2-2x+2=0$ (c) $x^2+2x+2=0$ (d) $x^2+2x-2=0$

Watch Video Solution

11. The value of p and $q(p \neq 0, q \neq 0)$ for which p,q are the roots of the equation $x^2+px+q=0$ are (a) p=1, q=-2 (b)

12. The number of solution of

 $|x^2+|x-1|=1$ is (a) 0 (b) 1 (c) 2 (d) 3

 $p=\,-\,1,\,q=\,-\,2\,$ (c) $p=\,-\,1,\,q=\,2\,$ (d)

p = 1, q = 2

13. If
$$x$$
 is real and $k=\dfrac{x^2-x+1}{x^2+x+1}$, then $k\in\left[\dfrac{1}{3},3\right]$ (b) $k\geq 3$ (c) $k\leq\dfrac{1}{3}$ (d) none of

these

Watch Video Solution

14. The one root of the equation $x^2+px+12=0$ is 4, while the equation $x^2+px+q=0$ has equal roots, the value of q is

$$\mathsf{A.}\ \frac{49}{4}$$

B.
$$\frac{4}{49}$$

C. 4

D. none of these

Answer: A

Watch Video Solution

15. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common roots, then $\lambda=$

A. 1

B. - 1

C. 3

D. none of these

Answer: B

Watch Video Solution

16. Solve the quadratic equations by using the general expressions for the roots of a quadratic equation:

$$x^2 - ig(3\sqrt{2} - 2iig)x - 6\sqrt{2}i = 0$$

17. Write the number of real roots of the equation

$$(x-1)^2 + (x+2)^2 + (x-3)^2 = 0.$$

Watch Video Solution

18. Solve:

$$x^2 - (7-i)x + (18-i) = 0$$

19. If α, β are roots of the equation $x^2-a(imes+1)-c=0,$ then write the value of $(1 + \alpha)(1 + \beta)$.

Watch Video Solution

20. Write the roots of the equation $(a-b)x^2 + (b-c)x + (c-a) = 0.$

21. The least value of k which makes the roots of the equation $x^2+5x+k=0$ imaginary is (a) 4 (b) 5 (c) 6 (d) 7

Watch Video Solution

22. If α, β are the roots of the equation $x^2+px+q=0, then-rac{1}{lpha}, \ -rac{1}{eta}$ are the roots of the equation (a) $x^2-px+q=0$ (b) $x^2 + px + q = 0$ (c) $qx^2 + px + 1 = 0$ (d) $qx^2 - px + 1 = 0$

23. Solve the equation $9x^2 - 12x + 20 = 0$ by factorization method only.

Watch Video Solution

24. The set of all values of m for which both the roots of the equation $x^2-(m+1)x+m+4=0$ are real and negative is (a) $(-\infty, -3] \cup [5, \infty)$ (b) $[\,-3,5]$ (c) $(\,-4,\,-3]$ (d) $(\,-3,\,-1]$

25. Solve the following quadratic equations by factorization method: $x^2-5ix-6=0$ (ii)

 $x^2 + 4ix - 4 = 0$

Watch Video Solution

26. Solve the equation $25x^2 - 30x + 11 = 0$ by using the general expression for roots

quadratic equation $ax^2 + bx + c = 0$, we get: a = 25, b = -30 and c - 11.

Watch Video Solution

27. Solve: $2x^2 - (3+7i)x - (3-9i) = 0$

Watch Video Solution

28. The value of k for which the quadratic equation $kx^2 + 1 = kx + 3x - 11x^2$ has real

and equal roots are (a) -11, -3, (b) 5, 7 (c)

5, -7 (d) none of these

Watch Video Solution

29. The value of a such that $x^2-11x+a=0$ and $x^2-14x+2a=0$ may have a common root is

A. 0 & 24

B. 0 & 12

C.2 & 24

D. 12 & 32

Answer: A

Watch Video Solution

30. If the roots of $x^2-bx+c=0$ are two consecutive integers, then b^2-4c is (a)0 (b) 1 (c) 2 (d) none of these

31. Solve the equation $4x^2 + 9 = 0$ by factorization method.

Watch Video Solution

32. Solve the equation $x^2 - 4x + 13 = 0$ by factorization method.

33. Solve the quadratic equation $2x^2-4x+3=0$ by using the general expressions for the roots of a quadratic equation.

Watch Video Solution

34. Solve the following quadratic equation by factorization method only: $x^2 + x + 1 = 0$

35. Solve the following quadratic equation by factorization method only: $x^2 + 2x + 5 = 0$

Watch Video Solution

36. Solve the following quadratic equation by factorization method only: $x^2 + x + 1 = 0$

37. Solve the following quadratic equation by factorization method only: $9x^2+4=0$

Watch Video Solution

38. Solve the following quadratic equation by

factorization method only:

$$4x^2 - 12x + 25 = 0$$

39. Solve the following quadratic: $4x^2 + 1 = 0$

Watch Video Solution

40. Solve the following quadratic: $x^2 + 2x + 2 = 0$

41. Solve the following quadratic:

 $21x^2 + 9x + 1 = 0$

$$x^2 + x + 1 = 0$$

$$27x^2 - 10x + 1 = 0$$

$$21x^2 - 28x + 10 = 0$$

Watch Video Solution

45. Solve the equation:

$$\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$$

46. Solve the following quadratic:
$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$

Watch Video Solution

47. Solve $\sqrt{5}x^2 + x + \sqrt{5} = 0$.

Watch Video Solution

48. Solve the following quadratic: $x^2 - 2x + \frac{3}{2} = 0$

$$5x^2 - 6x + 2 = 0$$

 $x^2 - 4x + 7 = 0$

$$x^2 - x + 1 = 0$$

Watch Video Solution

52. Solve the following quadratic:

$$17x^2 - 8x + 1 = 0$$

$$8x^2 - 9x + 3 = 0$$

54. Solve the following quadratic:

$$2x^2 + x + 1 = 0$$

$$\sqrt{2}x^2 + x + \sqrt{2} = 0$$

Watch Video Solution

56. Solve the following quadratic:

$$x^2 + \frac{x}{\sqrt{2}} + 1 = 0$$

$$-x^2 + x - 2 = 0$$

Watch Video Solution

58. Solve the following quadratic:

$$3x^2 - 4x + rac{20}{3} = 0$$

59. Solve the following equation by factorization method: $x^2 - \sqrt{2}i \ x + 12 = 0$

Watch Video Solution

60. Solve the following equation by factorization method: $3x^2 + 7ix + 6 = 0$

61. Solve the following equation by factorization method:

$$x^2 - (3\sqrt{2} + 2i)x + 6\sqrt{2}i = 0$$

62. Solve the following quadratic equation by

factorization method: $x^2 + 10ix - 21 = 0$

factorization method:

$$x^2-ig(2\sqrt{3}+3iig)x+6\sqrt{3}i=0$$

Watch Video Solution

64. Solve the following quadratic equation by

factorization

method:

$$x^2 + (1-2i)x - 2i = 0$$

factorization method: $6x^2 - 17ix - 12 = 0$

Watch Video Solution

66. Solve the following quadratic equation:

$$(2+i)x^2 - (5-i)x + 2(1-i) = 0$$

$$ix^2 - 4x - 4i = 0$$

Watch Video Solution

68. Solve the following quadratic equation:

$$x^2 - (5-i)x + (18+i) = 0$$

$$x^2 - (2+i)x - (1-7i) = 0$$

Watch Video Solution

70. Solve the following quadratic equation:

$$x^2+4ix-4=0$$

$$2x^2 + \sqrt{15}ix - i = 0$$

Watch Video Solution

72. Solve the following quadratic equation:

$$ix^2 - x + 12i = 0$$

$$x^2 - (3\sqrt{2} - 2i)x - \sqrt{2}i = 0$$

Watch Video Solution

74. Solve the following quadratic equation:

$$2x^2 - (3+7i)x + (9i-3) = 0$$

75. If a and b are roots of the equation $x^2-px+q=0$,then write the value of $\frac{1}{a} + \frac{1}{b}$.

Watch Video Solution

76. If roots α, β of the equation $x^2-px+16=0$ satisfy the relation $lpha^2 + eta^2 = 9$, then write the value of p.

77. If $2+\sqrt{3}i$ is a root of the equation $x^2+px+q=0$, then write the values of $p\ and\ q$.

Watch Video Solution

78. If the difference between the roots of the equation $x^2+ax+8=0$ is 2, write the values of $a\cdot$

79. If $a\ and\ b$ are roots of the equation $x^2-x+1=0$ then write the value of

 $a^2 + b^2$

80. Write the number of quadratic equation with real roots, which do not change by squaring their roots.

81. If lpha, eta are roots of the equation $x^2+lx+m=0$, write an equation whose roots are $-rac{1}{lpha}$ and $-rac{1}{eta}.$

82. If a,b are the roots of the equation

$$x^2+x+1=0$$
, then $a^2+b^2=$

83. If lpha and eta are the roots of $4x^2+3x+7=0$, then the value of $rac{1}{lpha}+rac{1}{eta}$

A.
$$\frac{4}{7}$$
B. $-\frac{3}{7}$

is `

c.
$$\frac{3}{7}$$

D.
$$\frac{3}{7}$$

Answer: B

84. If the difference of the roots of

$$x^2-px+q=0$$
 is unity, then

a)
$$p^2+4q=1$$
 b) $p^2-4q=1$ c)

$$p^2 + 4q^2 = \left(1 + 2q\right)^2$$
 d)

$$4p^2+q^2=(1+2p)^2$$

85. If lpha, eta are the roots of the equation $x^2 - p(x+1) - c = 0$ then

 $(\alpha+1)(\beta+1) =$

a) c b) c-1 c) 1-c d) none of these

